CONSERVATOIRE NATIONAL DES ARTS ET METIERS

ELECTRONIQUE A 11 (code n° 26067)

Première session

samedi 7 février 2004 9h. 12h.

sans documents

<u>Tout résultat donné sans unités sera considéré comme faux</u>

<u>Tout schéma électrique sans orientation des générateurs, des courants et des tensions</u> sera considéré comme faux.

Les exercices peuvent être traités dans un ordre quelconque.

EXERCICE 1: dopage (3,5 pts)

1) On donne un fragment du tableau de la classification périodique des éléments suivants :

100	GROUP																	
	1A	2A	38	4B	58	6B	.78		8		18	28	34	44	5A	64	7A	О
- - 1	+1 -1 H 1																	0 H 2
	MET	ALS					MET	ALS						NO	N META	LS	INER	T 6
2	Li 3	+2 Be 4		В	RITTL	.E			DUC.	TILE		OW-	+3 B 5	**C	N-3	-2 O 8	-1 F 9	o. N
3	No 11	+2 Mg .12											+3 Al 13	+2 -4 **Si 14	15 p	**S 16	:3Cl	1
4	+ t K 19	+2 Ca 20	+3 Sc 21	;²π ;³π 22	*3v	+2 +3 Cr 24	+2 +3 Mn +725	+2 +3Fe 26	*3Co 27	*3Ni 28	*1 *2 29	+2 Zn 30	+3 Ga 31	**Ge 32	33	34	** Br 35	3
5	Rb 37	+2 Sr 38	+3 Y 39	7r 40	13 Nb 41	46 Mo 42	11 17 43	+3 Ru 44	43 Rh 45	**Pd 46	Ag 47	+2 Cd 48	13 In 49	**Sn 50	51	"Te 52	53	5
6	Cs 55	+2 Ba 56	57-71	+4 Hf 72	+5 Ta 73	+6 W 74	*4 *6 *7Re 75	+3 **Os 76	+3 +1 77	†2 †4 Pt 78	*1 Au 79	*; Hg 80	13 T(B1	*2 **Pb 82	Bi 83	**Po 84	A1 85	F E
7	Fr 87	+2 Ra 88	★ 89- 103		•													

On considère un cristal de silicium intrinsèque de concentration intrinsèque $n_i=10^{10}~\text{cm}^{-3}$ à 300K. On désire obtenir à partir de ce cristal un semi-conducteur de type N en le dopant.

- a) Quels atomes de la classification allez vous choisir comme impuretés, pour quelles raisons ?
- b) On désire obtenir une concentration en électrons libres $n_o = 10^{15} \text{cm}^{-3}$ Quelle est la concentration des impuretés nécessaire au dopage et leur proportion dans le silicium sachant que le nombre d'atomes par cm⁻³ du silicium est de 5 10^{22} ?
- c) En déduire la concentration en trous de ce semi-conducteur ainsi dopé.

EXERCICE 2: semi-conducteur (2,5 pts)

Le tableau suivant précise les caractéristiques de différents semi-conducteurs : hauteur de la bande interdite, mobilité des électrons et des trous.

Semi-conducteur	Ge	Si	AsGa	InSb	InAs	GaSb
E _g en e.V.	0,66	1,12	1,43	0,16	0,33	0,67
$\mu_{\rm n} \ {\rm en} \ {\rm cm}^2 {\rm V}^{-1} {\rm s}^{-1}$	3900	1500	8500	78000	33000	4000
$\mu_{\rm p} {\rm en} {\rm cm}^2 {\rm V}^{-1} {\rm s}^{-1}$	1900	600	400	750	460	1400

- a) Quels sont, parmi ces six semi-conducteurs, les deux qui présentent la concentration intrinsèque la plus faible. Pourquoi ?
- b) Lequel de ces semi-conducteurs choisiriez vous pour réaliser un transistor JFET rapide ?
- c) Quel type de porteurs choisiriez vous ?

EXERCICE 3 : Régulation de tension. (6pts)

On se propose de réaliser une alimentation stabilisée avec une diode Zener 6V2. La caractéristique de la diode choisie est donnée sur le graphe du constructeur suivant.

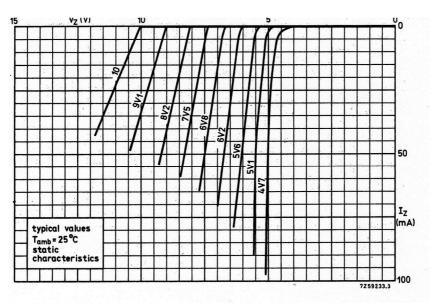
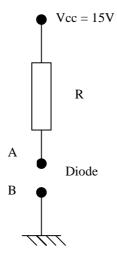
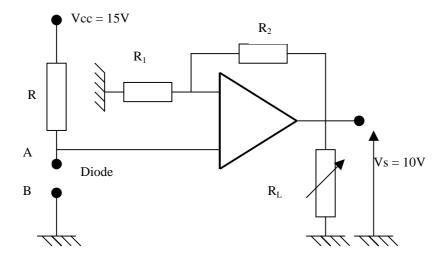
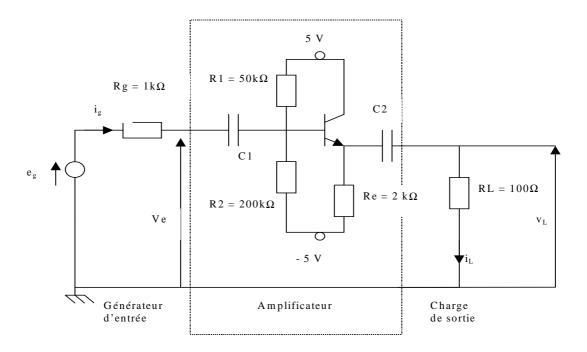




Fig. 6.

- 1) Le constructeur a représenté les caractéristiques jusqu'à une certaine valeur de Iz max. Pourquoi ces valeurs de Iz max dépendent-elles de la tension ? Justifier l'allure de la courbe qui relierait ces points.
- 2) On désire que le point de repos de la diode 6V2 soit choisi au milieu de la plage de régulation. Quelle est cette plage et quel est le point de polarisation ?
- 3) On utilise le montage de polarisation suivant de la diode.

- a) Dessiner le sens de branchement de la diode de régulation de tension sur ce schéma.
- b) Déterminer la valeur adéquate de la résistance R qui permet à cette diode d'être polarisée au point choisi dans la question 2
- c) Quelle est la résistance dynamique de cette diode au point de polarisation ?
- 4) La variation relative de la tension d'alimentation Vcc est de \pm 5%. Quelle est alors la variation de la tension aux bornes de la diode ?
- 5) On réalise maintenant le régulateur suivant construit à partir d'un amplificateur opérationnel idéal :



- a) Le dessinateur a oublié de préciser la position des entrées inverseuse et non inverseuse +. Pourriez vous indiquer ces entrées sur l'amplificateur opérationnel ?
- b) On veut une tension régulée aux bornes de la charge variable R_L de 10V. Préciser la valeur de R_2 si $R_1=100~k\Omega$.
- c) Quel est selon vous l'avantage de ce montage par rapport à un montage sans amplificateur opérationnel en ce qui concerne la résistance de charge ?

EXERCICE 4 Amplification (10 pts) Les parties I, II, sont indépendantes

On considère le montage suivant utilisant un transistor bipolaire npn et une alimentation double +5V, -5V.

Le gain statique en courant β nominal (typique) est de 100. La tension (VBE)_{on} est de 0,65V.

I) Etude générale et polarisation

- 1) Quel est le type de montage élémentaire utilisé (E.C. B.C. C.C.)? justifier votre choix.
- 2) Quelles sont les propriétés essentielles de ce type de montage?
- 3) Dessiner le schéma valable pour la polarisation.
- 3) Donner l'expression de la droite de charge statique et tracer cette droite.
- 4) Déterminer le point de fonctionnement statique du transistor I_{CR} et V_{CER} .
- 5) En déduire la valeur de l'impédance d'entrée dynamique h₁₁ du transistor pour ce point de repos.

II) Etude en régime dynamique

Pour cette étude on supposera que les condensateurs présentent une impédance nulle à la fréquence de travail.

Les caractéristiques dynamiques du transistor sont les suivantes :

$$h_{11} = 1 \text{ k}\Omega; \quad h_{12} = h_{22} = 0; \quad h_{21} = 100.$$

1) Dessiner le schéma équivalent du montage valable pour les petits signaux.

- 2) Tracer sur le même graphe que celui de la question I-3,4 la droite de charge dynamique.
- 3) Donner les expressions littérales puis numériques du gain en tension $A_v = V_L/V_e$; de l'impédance d'entrée du montage Ze et du gain composite en tension $A_{vc} = V_L/e_g$. Conclusion ou remarques sur les valeurs obtenues?
- 4) Déterminer le gain en courant $A_i = i_L/i_g$.
- 5) Déterminer l'expression et la valeur de l'impédance de sortie de ce montage.
- 6) Quelle est la valeur de l'amplitude maximale de la sinusoïde présente à l'entrée du montage que l'on peut atteindre afin de ne pas avoir de distorsion en sortie.

EXERCICE 5 : Montage à amplificateurs opérationnels. (8pts)

Dans les systèmes de transmission numérique, on utilise une modulation de phase d'une porteuse sinusoïdale .

On réalise la modulation de phase à l'aide du montage de la figure 1 où **les amplificateurs opérationnels sont supposés parfaits** et où T_1 et T_2 sont des interrupteurs électroniques à TEC.

Dans un premier temps on suppose que les interrupteurs sont parfaits c'est à dire qu'ils présentent une résistance nulle à l'état passant et une résistance infinie à l'état ouvert.

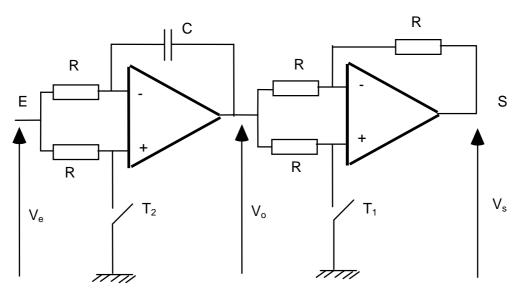
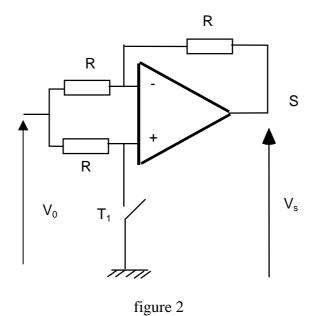
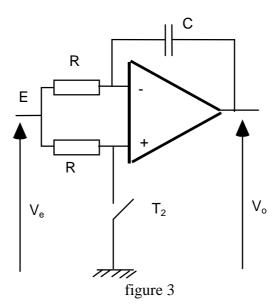
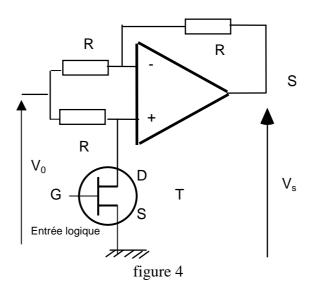




figure 1

On étudie d'abord le montage présenté par la figure 2 suivante :

- 1) Donner les expressions de la fonction de transfert $H_1 = V_s/V_o$ pour les deux positions de T_1 .
- 2) On s'intéresse ensuite au montage élémentaire de la figure 3. On rappelle que la tension d'entrée est une sinusoïde pure.

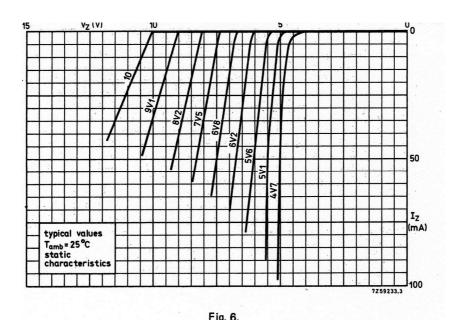

Donner l'expression de la fonction de transfert H₂ pour les deux positions de T₂.

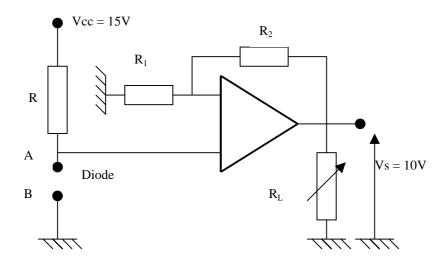
- 3) Que devient H_2 dans le cas où R et C vérifient la relation $RC\omega_0 = 1$?
- 4) On associe les deux amplificateurs conformément à la figure 1
- a) Quel est le module de $H = H_1H_2$?
- b) Remplir le tableau suivant donnant le déphasage entre la sortie et l'entrée selon les états des transistors : (T conducteur = court circuit = "on") ; (T bloqué = circuit ouvert = "off")

Transistor T ₁	Transistor T ₂	H module	∠H déphasage
off	off		
off	on		
on	off		
on	on		

- 5) On reprend le montage de la figure 2, mais maintenant on considère que **l'interrupteur n'est plus idéal** (Figure 4). On pose \mathbf{R}_{off} la résistance du transistor à l'état bloqué et \mathbf{r}_{on} la résistance du transistor à l'état passant.
- a) Déterminer à nouveau les expressions de la fonction de transfert H_{1on} et H_{1off} dans les deux cas en exprimant le résultat en fonction des résistances. Afin d'éviter de refaire deux fois le même calcul on pourra poser R_t la résistance équivalente du transistor. On exprimera H₁en fonction de R et de R_t. Il suffira ensuite de remplacer R_t par r_{on} ou R_{off} pour obtenir les deux expressions de H₁.
- b) On désire que les modules de H_{1on} et H_{1off} soient identiques. Montrer que ceci implique une relation entre R, r_{on} et R_{off} . On supposera que $r_{on} \ll R \ll R_{off}$.
- c) En déduire la valeur numérique de R afin que cette condition soit réalisée.

A.N.
$$R_{off} = 1 M \Omega$$
 ; $r_{on} = 100 \Omega$


6) Le signal d'entrée de commande de chaque transistor JFET est un signal logique de tension 0V pour le zéro logique et de 5V pour le "1" logique.


Le transistor choisi doit-il être un transistor à canal p ou à canal n ? Justifier votre choix.

Parmi les transistors ci dessous lequel choisiriez vous en ce qui concerne sa tension de pincement ? (justifier votre choix)

Transistor	A	В	С	D	Е	F
Tension de pincement Vp en volts	10	5	2,5	-2,5	-5	-10

N° de copie:

Transistor T ₁	Transistor T ₂	H module	∠H déphasage
off	off		
off	on		
on	off		
on	on		