CONSERVATOIRE NATIONAL DES ARTS ET METIERS

ELECTRONIQUE A 11 (26067)

Première session

Samedi 8 février 2003 9h. - 12h.

sans documents

<u>Tout résultat donné sans unités sera considéré comme faux</u>

<u>Tout schéma électrique sans orientation des générateurs, des courants et des tensions</u> sera considéré comme faux.

Questions de cours sur 15 points ; durée conseillée 1h 30

Les questions peuvent être traitées dans un ordre quelconque.

On rappelle les valeurs des constantes universelles.

 $k = 1.38 \ 10^{-23} \ J.K^{-1}$; $e = 1.6 \ 10^{-19} \ C$; $h = 6.64 \ 10^{-34} \ J.s$; $c = 3 \ 10^8 \ ms^{-1}$; $\varepsilon_0 = (1 \ /36\pi)10^{-9} \ Fm^{-1}$.

Exercice 1: (3 pts)

Semi-conducteur

On considère un cristal de silicium intrinsèque de concentration intrinsèque $n_i = 10^{10} \text{cm}^{-3}$ à 300K. On désire obtenir à partir de ce cristal un semi-conducteur de type N en le dopant.

- 1) Dans quelle colonne de la classification périodique allez vous choisir les atomes d'impuretés, pour quelles raisons ?
- 2) On désire obtenir une concentration n_0 en électrons libres = $2.10^{17}\,\text{cm}^{-3}$

Quelle est la concentration des impuretés nécessaire au dopage et leur proportion dans le silicium sachant que le nombre d'atomes par cm⁻³ du silicium est de 5 10²² ?

3) En déduire la concentration en trous p₀ de ce semi-conducteur ainsi dopé.

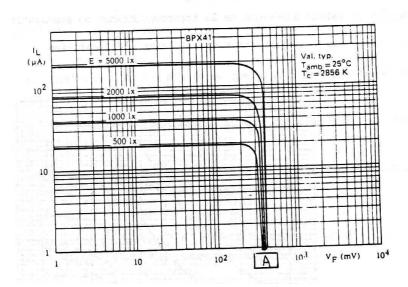
Exercice 2: (3 pts)

Jonction

On réalise une jonction semi-conductrice à partir de silicium dopé.

- 1) Expliquez pourquoi dans une jonction pn la région située au voisinage du plan de séparation des deux semi-conducteurs est une zone de désertion.
- 2) Préciser sur un schéma la nature des charges fixes qui s'établissent de part et d'autre du plan de jonction.
- 3) Dans quelle partie de la jonction s'étend la zone de désertion si $N_A = 10^{15} \text{cm}^{-3}$ et $N_D = 10^{17} \text{cm}^{-3}$?

Exercice 3: (4 pts)


Photodiode

Un constructeur donne les caractéristiques commerciales suivantes d'une photodiode éclairée. V_F représente la tension directe mesurée aux bornes de la diode et I_L le courant d'origine lumineuse.

1) Expliquez l'allure des courbes, que représente le point A?

Quel est le courant de court-circuit pour 1000 lux ? (le lux est une grandeur visuelle qui mesure un éclairement. La grandeur énergétique correspondante se mesure en Wm⁻²).

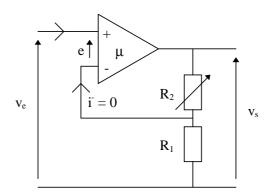
- 2) Dans une photodiode l'intensité du courant qui la traverse est-elle proportionnelle à la puissance lumineuse ? Justifier votre réponse. Vérifier la véracité de votre réponse à partir des caractéristiques fournies.
- 3) Quelle est la sensibilité de cette photodiode que l'on pourra exprimer en A/lux ?

Exercice 4: (3 pts)

Amplificateur de différence.

On désire amplifier la différence entre les tensions suivantes :

 $V_1 = 3V + 2mV$; $V_2 = 3V - 2mV$.


On utilise un amplificateur de différence de gain différentiel 500 et de taux de réjection de 60 dB.

- 1) Rappeler la définition du TRMC (taux de réjection en mode commun). En déduire la valeur numérique du gain en mode commun. Préciser la valeur de la tension de sortie. Conclusion ?
- 2) On veut pour un même gain différentiel de 500 que l'erreur introduite par le mode commun soit inférieure à 1% de la tension de sortie. Quelle est la valeur minimale du TRMC que l'on devrait avoir pour cet amplificateur?

Exercice 5: (2 pts)

Amplificateur opérationnel

On utilise un amplificateur opérationnel dans le montage suivant.

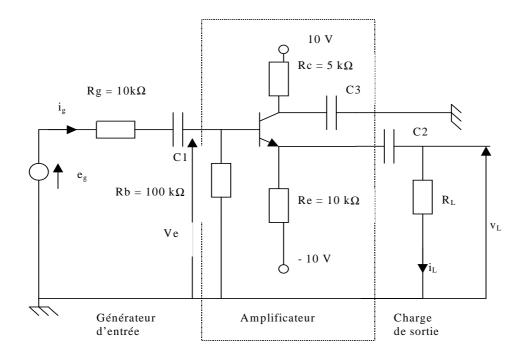
1) L'amplificateur opérationnel est supposé idéal.

On désire un gain en tension $A = V_s/V_e = 500$.

Quelle valeur faut il donner à R_2 si $R_1 = 500\Omega$?

2) L'amplificateur **n'est plus idéal**. Sa fréquence de transition est de 5 MHz.

Comment doit-être choisie la fréquence du signal d'entrée afin que la tension de sortie soit correctement amplifiée ?


PROBLEME SUR 15 POINTS

DUREE CONSEILLEE: 1h 30.

Les parties I, II, III; IV 3-4 sont indépendantes.

On considère le montage suivant utilisant un transistor bipolaire npn et une alimentation double +10V, -10V.

Le gain en courant statique β nominal (typique) est de 130. La tension (VBE)_{on} est de 0,65V.

I) GENERALITES: (1,5 points)

- 1) Quel est le type de montage élémentaire utilisé (E.C. B.C. C.C.)? justifier votre choix.
- 2) Quelles sont les propriétés essentielles de ce type de montage?

II) POLARISATION (4,5 points)

- 1) a) Dessiner le schéma valable pour la polarisation.
- b) Déterminer le point Q de polarisation du transistor et représenter ce point sur la droite de charge statique que l'on aura traçée.
 - c) Que pensez vous du choix du point de fonctionnement ?
 - d) Donner la valeur numérique du paramètre h_{11e}.
- 2) Le constructeur donne $\beta_{min} = 60$ et $\beta_{max} = 300$.
 - a) Calculer Ic_{max} et Ic_{min} . (valeurs maximale et minimale du courant Ic). En déduire la valeur de $\Delta Ic/Ic_{typ}$. ΔIc représente l'écart entre le courant Ic_{max} et le courant Ic_{min} La valeur Ic_{typ} correspond au gain β =130 étudié en 1).
 - b) L'utilisation d'un pont de base vous semble-t-elle préférable ?
 - c) Pourquoi dans les montages de type émetteur commun est-il nécessaire d'utiliser un pont de résistances pour polariser le transistor ?

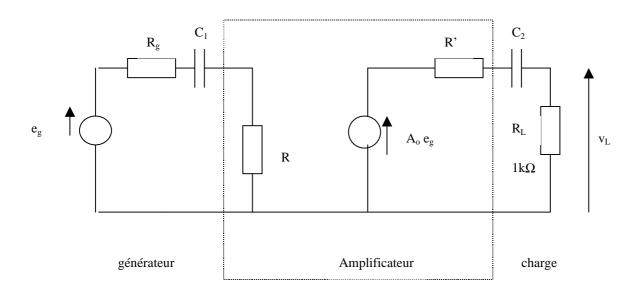
III) ETUDE EN PETITS SIGNAUX AUX FREQUENCES MOYENNES: (5,5 points)

Pour cette étude on supposera que les condensateurs n'interviennent pas dans le calcul en petits signaux.

On prendra pour effectuer les valeurs numériques les valeurs suivantes des paramètres du transistor:

$$h_{11e} = 4k\Omega; \quad h_{12e} = 0; \quad h_{21e} = \beta = 130; \quad h_{22e} = 0 \ \Omega^{\text{-1}}.$$

- 1) Dessiner le schéma équivalent de l'ensemble du montage en petits signaux.
- 2) Donner les <u>expressions littérales</u> <u>en fonction de la résistance de charge R_L des grandeurs suivantes: (on pourra utiliser l'expression $R_{equi} = R_E //R_L$ afin de ne pas alourdir les calculs)</u>
 - a) Le gain en tension.
 - b) L'impédance d'entrée.
 - c) Le gain en courant.
 - d) Faire les applications numériques dans les deux cas suivants:


$$R_L = 1k\Omega$$
; $R_L = infini$.

- 3) Déterminer la valeur de la résistance de sortie du montage.
- 4) Déduire des questions précédentes 2a et 2b la valeur du gain composite en tension.

IV) ETUDE AUX BASSES FREQUENCES. (3,5 points)

On supposera pour effectuer cette étude que la capacité de découpage du collecteur peut être assimilée à un court-circuit. On devra tenir compte des autres condensateurs.

1) Montrer que le schéma du montage peut se mettre sous la forme simplifiée suivante.

- 2) Donner les valeurs des grandeurs R, R' et Ao de ce schéma à partir des résultats de la question III. (préciser la valeur de R_L choisie pour le calcul de R et Ao).
- 3) En supposant que chaque condensateur intervienne seul dans l'affaiblissement du gain aux fréquences basses, préciser les fréquences de coupure dues à C_1 seul et à C_2 seul.

Donner les valeurs numériques de ces fréquences de coupure dans l'application suivante:

$$C_1 = 1\mu F;$$
 $C_2 = 4.7\mu F;$ $R_L = 1k\Omega;$ $R = 60k\Omega;$ $R' = 100\Omega;$ $Ao = 0.9$

4) A partir des résultats numériques précédents, tracer sommairement l'allure du diagramme **asymptotique de Bode du module** du gain composite v_L/e_g en supposant que les deux condensateurs interviennent simultanément.