

CONSERVATOIRE NATIONAL DES ARTS ET METIERS Année universitaire 2008-2009

Examen 1^{ère} Session d'Electronique Analogique ELE 004 (Durée 3 heures)

Exercice 1 (4pts): (Semi-conducteurs et Jonction PN)

On considère un cristal de silicium intrinsèque (Fig.1) dont la concentration est $n_i = 10^{10}$ cm⁻³

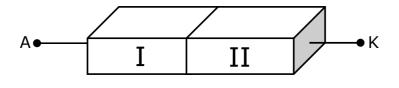


Fig. 1

- 1° La région II du barreau a été dopée par des atomes d'Arséniure (colonne V) dont la concentration est égale à 10^{16} cm⁻³. Quelle est la nature du semi-conducteur ainsi réalisé ? Donner les valeurs des concentrations à l'équilibre des électrons n_0 et des trous p_0 .
- 2° On dope également de manière uniforme la région 2. Quels types d'impuretés faut-il placer pour réaliser une jonction ? Par la suite, on choisira une concentration uniforme d'impuretés égale à $10^{19}~{\rm cm}^{-3}$ dans la région I.
- 3°- Pourquoi appelle-t-on la zone formée au contact des deux semi-conducteurs « zone déserte ». En l'absence de polarisation, calculer la largeur W de cette zone en sachant que le potentiel de diffusion des charges et l'épaisseur de la zone de transition sont donnés par :

$$V_d = 0.025 \cdot Ln \left(\frac{N_A N_D}{n_i^2} \right) \; ; \; W = \sqrt{\frac{2\varepsilon}{q N_A} (V_d - V_{PN})}$$

On donne les caractéristiques suivantes : $\epsilon = 10^{-10} \text{ F/m}$; $q = 1,6 \ 10^{-19} \text{ C}$.

 4° - On considère maintenant la jonction polarisée par une tension $V_{AK}=-2V$. Qu'arrive-t-il à la zone crée au niveau du plan de cette jonction, calculer la nouvelle largeur de la zone de transition?

Exercice 2 (8pts): (Diodes)

Les parties I, II peuvent être traitées indépendamment.

I. Soit le montage de la fig.2, le transformateur de tension alternative utilisé et un 220V-12V.

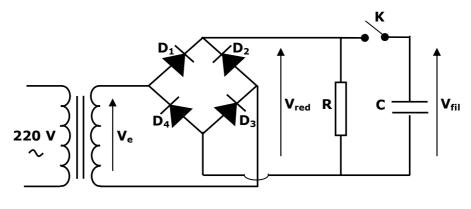


Fig. 2

- D_1 , D_2 , D_3 et D_4 sont des diodes identiques avec une tension de seuil inférieure à 1 volt. La tension au secondaire prend la forme suivante : $V_e = 12 \sin \omega t$. La résistance R est de $1k\Omega$.
- 1°- Peut-on considérer les diodes idéales ? Justifier votre réponse.
- 2° En gardant l'interrupteur K ouvert, représenter sur le même graphe l'allure des tensions $V_e(t)$ et $V_{red}(t)$. On précisera sur le graphe l'état de conduction des diodes.
- 3°- En fermant l'interrupteur K, donner l'allure de $V_{\text{fil}}(t)$ la tension aux bornes du condensateur C.
- II. On désire obtenir une tension régulée V_{out} de 8V en utilisant le montage de la fig.3, où $V_{in} = V_{fil}$ est la tension déterminée en partie I. On considérera que $V_{in}=8 + v_{in}(t)$

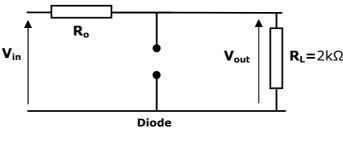


Fig. 3

- 1°- Quel est le type de diodes utilisé pour réaliser cette fonction de régulation ?
- 2°- Spécifier le branchement de la diode sur le schéma de la fig.3). Préciser sa <u>référence</u> parmi celles proposées sur la planche de la fig.4.
- 3° Quelle est la <u>plage de régulation</u> considérée (faire un schéma explicatif) ? Déterminer la valeur adéquate de R_0 pour que la droite de charge <u>statique</u> passe par le point de repos Q_R (V_{RZ} , I_{RZ}) choisit au <u>milieu</u> de la plage de régulation.
- 4°- Donner la valeur de la résistance dynamique de la diode.
- 5°- En considérant que $V_{out}=V_Z+v_{out}(t)$, exprimer les fluctuations de la sortie $v_{out}(t)$ en fonction des fluctuations de l'entrée $v_{in}(t)$. Donner la valeur du coefficient de régulation : $\frac{v_{out}(t)}{v_{in}(t)}$.

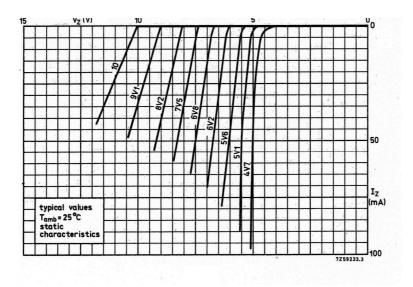


Fig. 4

Exercice 3 (10pts): (Amplification à transistor)

Les parties I, II et III sont indépendantes.

On considère le montage suivant utilisant un transistor bipolaire NPN branché en <u>émetteur commun</u> et une alimentation stabilisée V_{cc} de +15V (Fig.5); V_{BE} =0,71V.

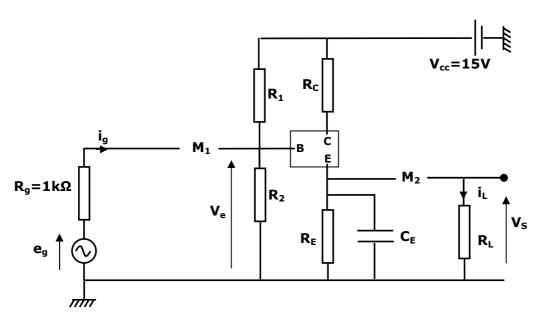
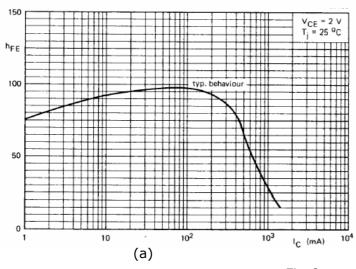


Fig. 5

I. GENERALITES:


- 1°- Indiquer le branchement du transistor bipolaire sur le schéma de la Fig.5. (entre B,C et E)
- 2°- Que faut-t-il rajouter au montage de la fig.5, aux emplacements M1 et M2 ? Justifier votre réponse.
- II. POLARISATION (Régime statique) :
- 1°- Représenter le schéma de polarisation du transistor.

- 2°- Donner l'expression de la droite de charge statique.
- 3° Le point de repos Q_R du transistor est choisi de telle sorte que V_{CER} =2V. Déterminer la valeur de $(R_E + R_C)$ à partir de l'expression de la droite de charge statique et de la caractéristique représentée dans la Fig.6.b.
- 4°- Relever la valeur du gain statique en courant $\beta = h_{FE}$ à partir de Fig.6.a (on prendra la valeur entière supérieure la plus proche pour la suite).

III. ETUDE EN PETITS SIGNAUX AUX FREQUENCES MOYENNES (Régime dynamique) :

Pour cette étude on supposera que tous les condensateurs sont assimilables à des <u>courts circuits</u>. On prendra, pour effectuer les calculs numériques, les valeurs suivantes des paramètres du transistor: $h_{11e} = 50~\Omega$; $h_{12e} = 0$; $h_{21e} = \beta$; $h_{22e} = 0~\Omega^{-1}$. Les valeurs suivantes des résistances: $R_1//R_2 = 1.8~k\Omega$; $R_C = 100~\Omega$; $R_E = R_L$.

- 1°- Dessiner le schéma équivalent en petits signaux du transistor seul, puis celui de l'ensemble du montage.
- 2°- Déterminer dans l'ordre, les expressions puis les valeurs des grandeurs suivantes :
 - a) Le gain en courant : $A_I = \frac{i_L}{i_g}$.
 - b) L'impédance d'entrée : $Z_e = \frac{V_e}{i_g}$
 - c) Le gain en tension : $A_V = \frac{V_s}{V_a}$.
 - d) Le gain en tension composite: $A_C = \frac{V_s}{e_g}$.
 - e) l'admittance de sortie : $Y_S = \frac{i_L}{V_S}$.

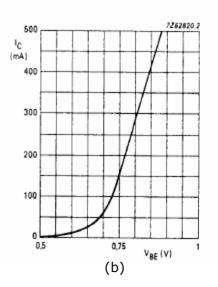
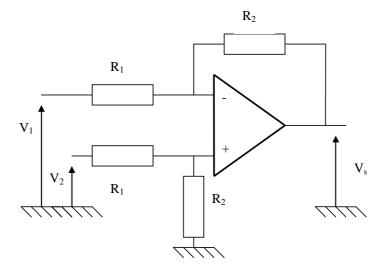
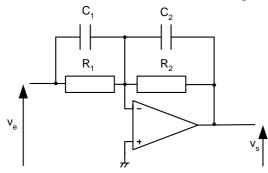



Fig.6

Exercice 4 Amplificateur de différence (4pts):

On désire mesurer la différence entre deux tensions importantes mais voisines au moyen du circuit suivant.



L'amplificateur opérationnel est supposé idéal pour les calculs demandés.

- 1) Montrer que l'expression obtenue à la question précédente se simplifie et s'exprime sous la forme $V_0 = A(V_1-V_2)$ où A est un nombre algébrique. Quelle est l'expression de A en fonction de R_1 et R_2 ?
- 2) On veut que A en module soit de 100. Quelle valeur faut-il donner à R_2 si $R_1 = 1k\Omega$.

Exercice 5 (6pts):

On considère le circuit suivant en régime sinusoïdal

1/ Déterminer la fonction de transfert $T(j\omega) = \frac{v_S}{v_E}$ en fonction de R_1 , C_1 , R_2 , C_2 et ω

2/ Mettre la fonction de transfert sous la forme $T(j\omega) = T_0 \frac{1+j\frac{\omega}{\omega_1}}{1+j\frac{\omega}{\omega_2}}$

3/ Exprimer le gain et l'argument de cette fonction de transfert

4/ A. N. :
$$R_1 = 3{,}16k\Omega$$
, $C_1 = 8\mu F$, $R_2 = 10k\Omega$ et $C_2 = 0{,}8\mu F$

Tracer les diagrammes de Bode (gain et phase) asymptotique et réel. Déterminer les points remarquables.

5/ Le signal d'entrée est de la forme v $e(t) = 0.1\cos(2\pi 10t)$. Déterminer le signal de sortie vs(t) Tracer ces deux signaux en fonction du temps.