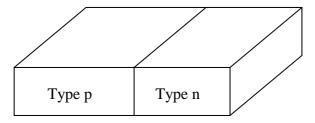
CONSERVATOIRE NATIONAL DES ARTS ET METIERS

ELECTRONIQUE ANALOGIQUE (code ELE 004)

Première session

vendredi 9 février 2007 18h 30 - 21h 30

sans documents


<u>Tout résultat donné sans unités sera considéré comme faux</u>

<u>Tout schéma électrique sans orientation des générateurs, des courants et des tensions</u> sera considéré comme faux.

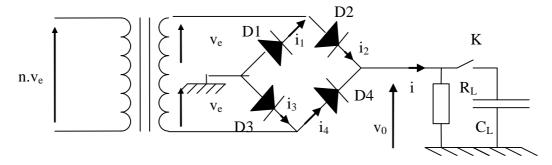
Les exercices peuvent être traités dans un ordre quelconque.

EXERCICE 1 : dopage (3 points)

On cherche à réaliser une jonction pn à partir d'un cristal de silicium intrinsèque. La concentration intrinsèque du silicium est $ni = 10^{10} cm^{-3}$. La densité atomique du silicium est de 5 10^{22} atomes /cm³.

1) On a choisi des atomes d'arsenic (colonne 5) pour doper une des deux régions. Leur concentration est de 10^{16} cm⁻³.

Préciser le type de matériau obtenu, la concentration en électrons n_0 et en trous p_0 et la proportion d'atomes d'impuretés dans cette région.


2) Dans quelle colonne du tableau de classification périodique des éléments doivent se trouver les atomes dopants de l'autre partie de la jonction ? Si on veut $p_0 = 10^{15}$ cm⁻³ dans cette région, quelle est la concentration des atomes dopants ?

EXERCICE 2 : redressement (5 points)

Soit le montage classique redresseur double alternance utilisant un transformateur abaisseur et un pont de diodes :

Les quatre diodes sont identiques. Elles seront supposées idéales (résistance nulle et tension de seuil nulle).

A) Dans un premier temps **l'interrupteur K est ouvert** et le courant i ne circule que dans la résistance R_L .

Redresseur à pont de diodes

- 1. La tension d'entrée au primaire est $n.v_e = n.V_M.\sin(\omega.t)$. Quelles sont les diodes qui conduisent pendant l'alternance positive? même question pour l'alternance négative? donner les graphes de $i_1(t)$ et $i_2(t)$ pour une période complète du signal $v_e(t)$. En déduire le graphe de i(t) puis le graphe de Vo(t).
- 2. On suppose que $v_e = 40 \sin(100.\pi t)$, $R_L = 500 \Omega$.

Calculer la valeur maximale I_M , La valeur moyenne \overline{I} et la valeur efficace I_{eff} du courant total i(t). On rappelle que $\overline{I} = \frac{2}{T} \int\limits_0^{T/2} i(t) . dt = 2I_M/\pi$ sur une arche de sinusoïde (alternance) et $I_{eff}^2 = \frac{2}{T} \int\limits_0^{T/2} i^2(t) . dt = I_M^2/2$ sur une arche de sinusoïde.

3. L'interrupteur K est maintenant fermé. Dessiner l'allure de $V_0(t)$ pour avoir un redressement acceptable ? Comment doit-on choisir la constante de temps R_LC_L devant la période du signal sinusoïdal ? Proposer une valeur pour la capacité C_L

EXERCICE 3: Amplificateur à transistor bipolaire

Les parties I, II, III; sont indépendantes.

Soit le schéma de la figure 1 avec $Re = R_L = 10 \text{ k}\Omega$; $Rg = 1 \text{ k}\Omega$.

On se propose d'étudier ce montage élémentaire utilisant un transistor bipolaire npn, et deux alimentations symétriques +10V et -10V. Le collecteur est alimenté en +10V et la résistance d'émetteur en -10V. Le générateur d'entrée et la charge de sortie sont connectés par l'une de leurs bornes à la masse. Les caractéristiques statiques du transistor sont données par les figures du constructeur suivantes:

Figure 3 : gain statique en courant $h_{FE} = \beta$ en fonction du courant I_{C}

Figure 13: courant collecteur I_C en fonction de la tension V_{BE}.

I Etude générale et polarisation (5 points).

- 1) Quel est le type de montage utilisé pour réaliser cet amplificateur (E.C.; B.C; C.C.)?
- 2) Quelles sont les propriétés d'un tel étage? (Répondre sommairement sans faire de calculs!)

- 3) Quel sont les rôles des condensateurs C_1 et C_2 ?
- 4) Dessiner le schéma valable pour la polarisation.
- 5) Donner l'équation de la droite de charge statique et représenter cette droite sur une figure.
- 6) On désire que le point de repos soit $I_{\text{CR}}=1,5\ \text{mA}.$

Quelle est alors la tension V_{CER} (Indice R pour repos)?

Quelle est la valeur de la résistance Rb nécessaire pour obtenir ce point de repos (On utilisera le schéma obtenu en I-4 ainsi que les graphes du constructeur).

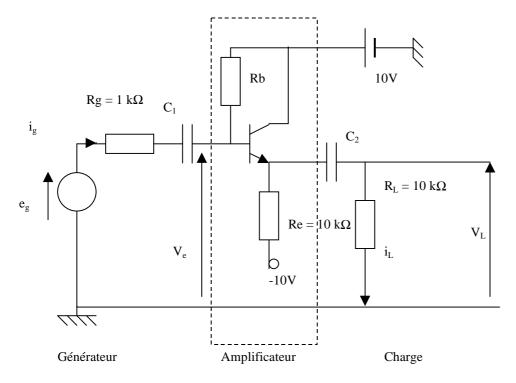


Figure 1 Schéma de l'amplificateur à bipolaire.

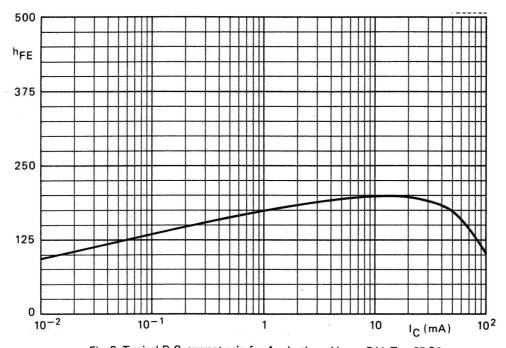
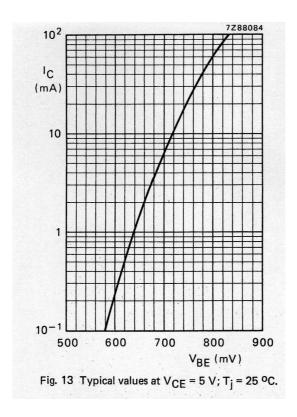



Fig. 3 Typical D.C. current gain for A-selections. V_{CE} = 5 V; T_j = 25 °C.

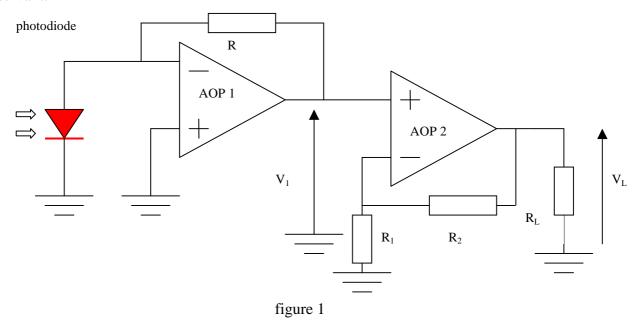
II Détermination du paramètre h₁₁ du transistor (2 points).

- 1) Donner la valeur du paramètre h_{11e} (impédance d'entrée en petits signaux) que l'on déduira des deux graphes du constructeur figures 3 et 13. Attention, la figure 13 n'est pas tracée avec des échelles linéaires. On prendra donc une très petite excursion de courant pour la lecture.
- 2) Comparer cette valeur à la relation théorique $h_{11} = \frac{\beta V_T}{|I_E|}$ avec $V_T = 0.025 V$ à 300°K.

III Etude en petits signaux. (5 points)

Pour cette étude on supposera que les condensateurs présentent une impédance nulle à la fréquence de travail. On donne les valeurs des paramètres dynamiques h_{ije} du transistor en petits signaux :

$$h_{11e} = 3k\Omega$$
 ; $h_{12e} = 0$; $h_{21e} = 180$; $h_{22e} = 0$.


- 1) Dessiner le schéma équivalent du montage valable pour les petits signaux.
- 2) Donner l'expression de la pente de la droite de charge dynamique. Tracer cette droite sur le même graphe que celui de la droite de charge statique obtenue à la question I-5. Que pensez vous du choix du point de repos?

- 3) Donner les expressions littérales puis numériques des paramètres suivants : impédance d'entrée, gains en tensions $Av = v_L/v_e$; $Avc = v_L/e_g$; gain en courant $Ai = i_L/i_g$; impédance de sortie de l'amplificateur.
- 4) Conclusion sur ce montage : répond-il au type de montage élémentaire utilisé ?

AN: Re = $R_L = 10 \text{ k}\Omega$; Rg = $1 \text{ k}\Omega$; Rb = $510 \text{ k}\Omega$;

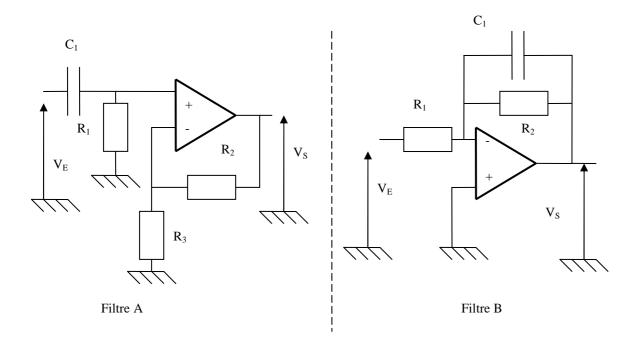
EXERCICE 4 : Montage à Amplificateur opérationnel (5points)

On cherche à convertir en tension le courant fourni par une photodiode grâce au montage suivant:

Les amplificateurs opérationnels AOP 1 et AOP 2 sont supposés idéaux: Gain en boucle ouverte infini, impédance d'entrée infinie, impédance de sortie nulle.

1) Le constructeur indique que la photodiode possède une sensibilité typique S = 0,72 A/W. La photodiode est illuminée par un éclairement correspondant à une puissance de 0,1 mW. Quelle est la d.d. p. aux bornes de la diode ? Le courant inverse de cette photodiode peut-il perturber l'intensité due au flux lumineux ?

Quelle est la valeur de l'intensité qui circule dans cette photodiode ? On précisera son sens sur le schéma du montage


- 2) Quelle est la tension de sortie V_1 de l'amplificateur AOP 1 si la résistance R vaut 10 k Ω ?
- 3) On veut, pour ce même courant fourni par la photodiode, une tension de sortie V_L de 5V en valeur absolue sur la charge R_L. Préciser un couple de résistance R₂ et R₁ pour obtenir ce résultat. La tension en sortie vaut elle +5 ou -5V ?
- 4) Proposer un schéma pour obtenir la même valeur absolue de la tension de sortie, mais de signe opposé à celui du montage ci-dessus.

Les résistances R_2 et R_1 devront être choisies dans la gamme $10k\Omega$ - $500k\Omega$.

EXERCICE 5 : Filtre actif (5points)

Dans un ouvrage consacré aux filtres figurent les deux schémas suivants :

- 1) Quel est l'ordre du filtre A et l'ordre du filtre B?
- 2) Quelle est la nature de chacun de ces filtres ? (passe-bas, passe-haut, passe-bande, coupe bande) ? On ne demande pas de faire de calculs littéraux pour répondre à cette question mais de justifier en une ou deux phrases votre choix pour chacun des filtres.
- 3) On se propose maintenant d'étudier uniquement le filtre A.
- a) Déterminer la fonction de transfert de ce filtre en fonction des éléments. L'amplificateur opérationnel sera supposé idéal. (Gain infini en boucle ouverte, impédance d'entrée infinie, impédance de sortie nulle).
- b) On désire que le gain en tension V_s/V_e aux hautes fréquences soit de 40 dB. Quelle est la valeur qu'il faut prendre pour R_2 si $R_3 = 1k\Omega$.
- c) On désire une fréquence de coupure de 100 Hz. Quelle est la valeur de la capacité C_1 si $R_1=100~k\Omega$?
- d) L'amplificateur opérationnel n'est plus idéal et le constructeur indique dans sa notice que la fréquence de transition F_T est de 2 MHz. Jusqu'à quelle fréquence ce montage pourra t'il être utilisé ?

A remettre éventuellement avec les copies :

 N° de copie :

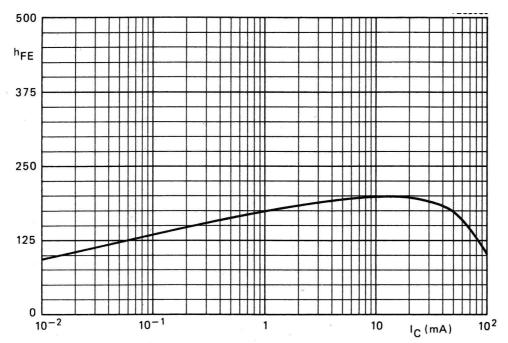
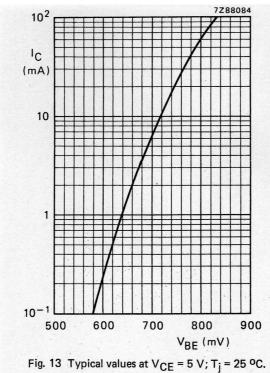



Fig. 3 Typical D.C. current gain for A-selections. V_{CE} = 5 V; T_j = 25 °C.

