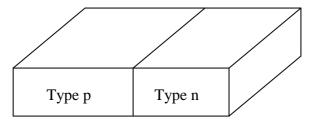
CONSERVATOIRE NATIONAL DES ARTS ET METIERS

ELECTRONIQUE ANALOGIQUE (code ELE 004)

Première session

vendredi 10 février 2006 18h 15 - 21h 15

sans documents


<u>Tout résultat donné sans unités sera considéré comme faux</u>

<u>Tout schéma électrique sans orientation des générateurs, des courants et des tensions</u> sera considéré comme faux.

Les exercices peuvent être traités dans un ordre quelconque.

EXERCICE 1 : dopage (3 pts)

On cherche à réaliser une jonction pn à partir d'un cristal de silicium intrinsèque. La concentration intrinsèque du silicium est $ni = 10^{10} cm^{-3}$. La densité atomique du silicium est de $5 \cdot 10^{22}$ atomes /cm³.

- 1) Dans quelle colonne de la classification périodique faut il choisir les atomes dopants pour réaliser la partie p ; la partie n de la jonction ?
- 2) On a choisi des atomes d'aluminium (colonne 3) pour doper une des deux régions. Leur concentration est de 10¹⁶ cm⁻³.

Préciser le type de matériau obtenu, la concentration en électrons n_0 et en trous p_0 et la proportion d'atomes d'impuretés dans cette région.

EXERCICE 2: Photodiodes (4 pts)

- 1) Quel est le principe de conversion de l'énergie lumineuse en énergie électrique dans une photodiode ?
- 2) Rappeler ou retrouver la relation liant le seuil de photoconductivité λ_o d'une photodiode en fonction de la hauteur de la bande interdite du semi-conducteur E_G .
- 3) On donne le tableau ci-dessous indiquant les hauteurs de bande interdite de différents semi-conducteurs.

Matériau	AsGa	$AsGa_{0,9}Al_{0,1}$	AsGa _{0,7} Al _{0,3}	GaP
Bande interdite en e.V.	1,43	1,53	1,77	2,45

Quels sont les matériaux de ce tableau qui pourront être utilisés pour réaliser des photodiodes travaillant sous un éclairement lumineux de longueur d'onde $\lambda = 0.72 \, \mu m$?

On rappelle que $h = 6,63. \ 10^{-34} \ J.s$; $c = 3. \ 10^8 \ m.s^{-1}$; $e = 1,6 \ 10^{-19} \ C$

- 4) Dans quel sens doit on polariser cette photodiode pour l'utiliser en capteur de rayonnement lumineux ?
- 5) Quel est dans ce tableau, le semi-conducteur possédant la concentration intrinsèque la plus grande ? Justifier votre réponse.

EXERCICE 3 : Diode régulatrice de tension (5 pts)

On désire réguler un montage avec une **tension** V_L **de 20V** conformément au montage suivant (figure 1).

Les fluctuations de la source de tension à réguler sont représentées par ΔE . La tension de la source sans fluctuation est E=27V.

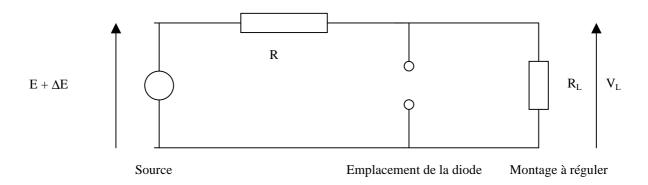


Figure 1

1) Dessiner la diode sur le schéma précédent (figue 1) et préciser la diode que vous utiliseriez parmi les diodes de la planche suivante (figure 2)?

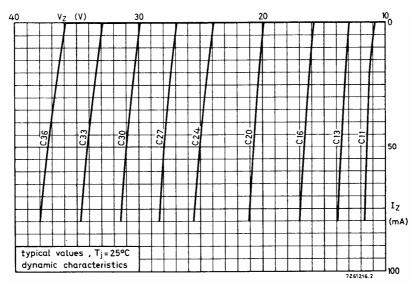


Figure 2

2) Le constructeur précise la puissance maximale que peut dépenser cette diode qui est

 $P_{TOT\ Max} = 1W$ à 25°C. Quel point de repos choisiriez vous sur la caractéristique de cette diode pour avoir l'excursion maximale? Préciser les valeurs de Iz et de Vz en ce point.

- 3) Calculer la résistance dynamique de cette diode au point de fonctionnement.
- 4) Donner le schéma équivalent en petits signaux de l'ensemble du montage et en déduire la variation ΔV_L en fonction de la fluctuation de l'entrée ΔE

 $A.N:\Delta E=2V$; $R=100\Omega;$ $R_L=500\Omega.$

EXERCICE 4: Amplification à transistor. (11 points)

Les parties I, II, III sont indépendantes.

On considère le montage suivant utilisant un transistor bipolaire npn et une alimentation stabilisée de +12V. Le pôle négatif de l'alimentation est relié à la masse.

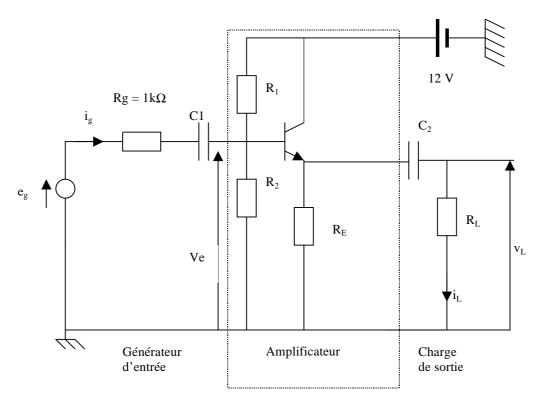
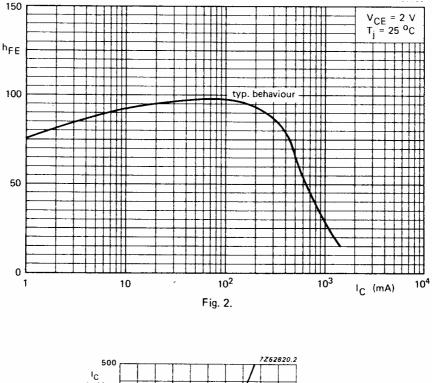



Fig. 1

Les caractéristiques du transistor sont représentées par les graphes suivants :

La figure 2 représente l'évolution du gain en courant $h_{fe} = \beta$ du transistor en fonction du courant de collecteur.

La figure 3 représente l'évolution du courant collecteur en fonction de la tension V_{BE}

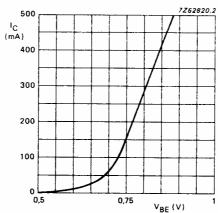


Fig.3

I) GENERALITES

- 1) Quel est le type de montage élémentaire utilisé (E.C.; B.C.; C.C.)? pour quelles raisons?
- 2) Quelle est la propriété de ce type de montage?

II) POLARISATION

- 1) a) Dessiner le schéma valable pour la polarisation.
 - b) Le point Q de polarisation du transistor est choisi de telle sorte que $V_{CE} = 4V$ et $I_C = 50 \text{mA}$. Représenter ce point sur la droite de charge statique que l'on aura traçée.
 - c) En déduire la valeur de β et de V_{BE} à partir des caractéristiques (résultats à 10% près)
 - d) Quel est selon vous l'intérêt de choisir $I_c = 50 \text{mA}$?
 - e) Donner la valeur numérique du paramètre h_{11e} . (On pourra, après en avoir rappeler la définition, utiliser les caractéristiques fournies par le constructeur en se plaçant au point de fonctionnement)

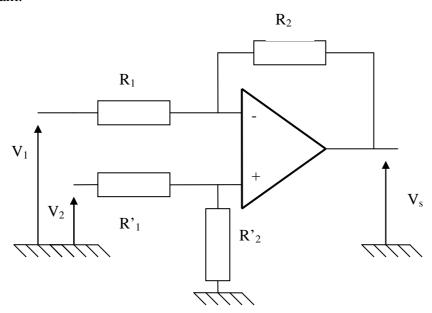
- 2) Déterminer la valeur de la résistance R_E.
- 3) On choisit un courant dans la résistance R_2 égal à deux fois le courant de base du transistor. En déduire la valeur des résistances R_2 et R_1 .

III) ETUDE EN PETITS SIGNAUX AUX FREQUENCES MOYENNES.

Pour cette étude on supposera que les condensateurs sont assimilables à des coutscircuits.

On prendra, pour effectuer les calculs numériques, les valeurs suivantes des paramètres du transistor.

 $h_{11e} = 50 \ \Omega \ ; \quad h_{12e} = 0; \quad h_{21e} = \beta = 100; \quad h_{22e} = 0 \ \Omega^{-1}.$

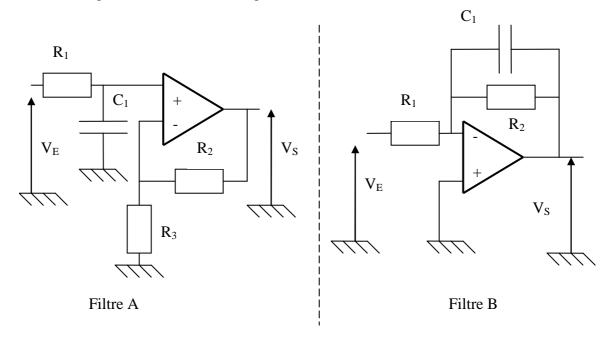

et les valeurs suivantes des résistances:

 $R_1/\!/R_2=1,\!8~k\Omega$; $R_E=R_L=160\Omega$

- 1) Dessiner le schéma équivalent de l'ensemble du montage en petits signaux.
- 2) Donner dans l'ordre que vous voulez les valeurs des grandeurs suivantes après en avoir calculé les expressions littérales:
 - a) Le gain en tension.
 - b) L'impédance d'entrée.
 - c) Le gain en courant.
 - d) La résistance de sortie.

EXERCICE 5 : Amplificateur de différence (3pts)

On désire mesurer la différence entre deux tensions importantes mais voisines au moyen du circuit suivant.


L'amplificateur opérationnel est supposé idéal pour les calculs demandés.

- 1) Exprimer la tension de sortie en fonction des tensions d'entrée V_1 et V_2 et des résistances du montage.
- 2) On suppose que les résistances R_1 et R'_1 sont identiques de même pour les résistances R_2 et R'_2 . Montrer que l'expression obtenue à la question précédente se simplifie et

- s'exprime sous la forme $V_0 = A(V_1-V_2)$ où A est un nombre algébrique. Quelle est l'expression de A en fonction de R_1 et R_2 ?
- 3) On veut que A en module soit de 100. Quelle valeur faut-il donner à R_2 si $R_1 = 1k\Omega$.
- 4) On désire maintenant obtenir le résultat $V_0 = -A(V_1-V_2)$ à partir du même schéma de base. On vous propose d'intervertir les entrées inverseuse et non inverseuse de l'amplificateur opérationnel. Cette solution est elle la bonne ? Justifier votre réponse. Avez-vous une autre solution à proposer ?

EXERCICE 6 : Filtre actif (5pts)

Dans un ouvrage consacré aux filtres figurent les deux schémas suivants :

- 1) Quel est l'ordre du filtre A et l'ordre du filtre B?
- 2) Quelle est la nature de chacun de ces filtres ? (passe-bas, passe-haut, passe-bande, coupe bande) ? On ne demande pas de faire de calculs pour répondre à cette question mais de justifier en une ou deux phrases votre choix pour chacun des filtres.
- 3) On veut que la sortie soit en phase avec l'entrée dans le domaine des fréquences où le condensateur n'intervient pas. Quel montage doit on choisir ? Justifier votre réponse. (Aucun calcul n'est nécessaire)
- 4) On se propose maintenant d'étudier **uniquement le filtre A**.
- a) Déterminer la fonction de transfert de ce filtre en fonction des éléments. L'amplificateur opérationnel est supposé idéal.
- b) On désire que le gain aux basses fréquences soit de 32 dB. Quelle est la valeur de R_2 si $R_3 = 1k\Omega$.
- c) On désire une fréquence de coupure de 20kHz. Quelle est la valeur de C_1 si $R_1 = 10k\Omega$.
- d) L'amplificateur opérationnel n'est plus idéal et le constructeur indique dans la notice que sa fréquence de transition F_T est de 5 MHz. Cet Amplificateur convient-il au montage étudié ? Justifier votre réponse.