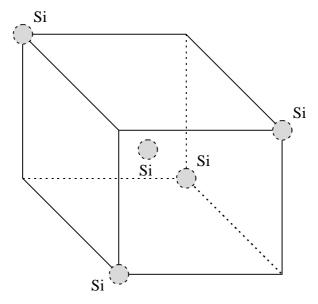
ELE004 2007-2008

<u>TD 1</u>


La conductivité dans les solides. Métal, semi-conducteur, isolant. Notion de trou. Propriétés physiques des S.C.

**exercice 1.1

PERIOD		GROUP																
1	1A	2A	3B	4B	58	6B	7B	8			1B	2B	3A	44	5A	6A	7A	0
1	+1 -1 H 1																	0 H e 2
		ALS					MET							NON METALS			INER	T GAS
2	Li Be 4			BRITTLE					DUC			OW- _TING	+3 B 5	+2 -4 +4 C 6	+1 -1 +2 N-2 +3 N-3 +4 7	O 8	-1 F 9	0. Ne 10
3	+1 Na 11	+2 Mg 12											+3 Al 13	+2 =4 ⁺⁴ Si 14	+3 -3 +5 P - 15	+4 -2 +6 S 16	17 -1 17 C l 17	o Ar 18
4	+1 K 19	+2 Ca 20	+3 Sc 21	+2 +3 Ti +4 Ti 22	+2 +3 +4 +5 23	+2 +3 +6 24	+2 +3 M n +425	+2 +3 Fe 26	+2 +3Co 27	+2 +3Ni 28	+1 +2Cu 29	+2 Zn 30	+3 Ga 31	32	+3 +5 As 33	+4 -2 +6 Se 34	+1 -1 +5 Br 35	o Kr 36
5	+1 Rb 37	+2 Sr 38	+3 Y 39	+4 Zr 40	+3 +5 Nb 41	+6 M 0 42	+4 +6 +7 Tc 43	+3 Ru 44	+3 Rh 45	+2 +4 Pd 46	47	+2 Cd 48	49	+2 +4 50 50	+3 -2 +5 Sb 51	52	+1 -1 +5 I +7 I 53	o Xe 54
6	+1 Cs 55	+2 Ba 56	♦ 57-71	+4 Hf 72	+5 Ta 73	+6 W 74	+4 +6 +7 Re 75	+3 +4 Os 76	+3 +4 Ir 77	+2 +4 Pt 78	+1 +3 Au 79	+1 +2 +3 +3 +3 +3 +3 +3 +3 +3 +3 +3 +3 +3 +3	+1 +3 Tℓ 81	+2 +4 Pb 82	+3 +5 Bi 83	+2 +4 Po 84	A† 85	o Rn 86
7	+1 Fr 87	+2 Ra 88	★ 89- 103									,						

- 1. Dans quelle colonne de la classification périodique se trouvent les atomes de Silicium et de Germanium ?
- 2. La structure cristalline de base du Silicium est la suivante :

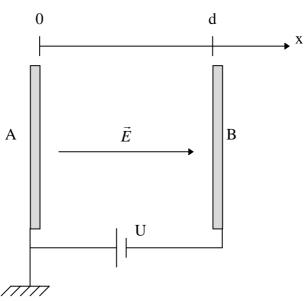
ELE004 2007-2008

Pour quelle raison a-t-on ce regroupement d'atomes ?

**exercice 1.2

Si le Silicium était un métal, quel serait le nombre d'électrons libres par cm³?

1 électron libre par atome.


d : densité volumique = $2,33x10^3$ kg/m³.

A0 : nombre d'Avogadro = $6,023 \times 10^{23}$ atomes par mole.

A: masse atomique 28,086.

exercice 1.3

Le champ électrique supposé uniforme est produit par le système d'électrodes suivant :

Conservatoire National des Arts et Metiers

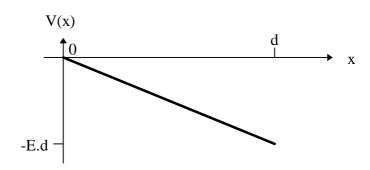
ELE004 2007-2008

1. Donner l'énergie totale d'un électron animé d'une vitesse \vec{v} et placé dans le champ \vec{E} produit par une différence de potentiel (ddp) U.

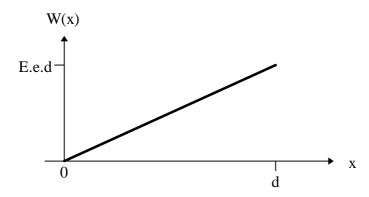
- 2. Tracer le graphe de V(x), potentiel à l'intérieur du système.
- 3. En déduire le graphe de l'énergie électrostatique W(x).
- 4. Un électron est émis par A avec une vitesse v_0 dans le sens de \overrightarrow{ox} . Quelle est la limite de cette vitesse pour que l'électron arrive en B ?

Réponses 1.1

- 1. colonne IV.
- 2. mise en commun des 4 électrons périphériques avec 4 atomes voisins pour compléter la dernière sous couche $3p^2$.


Réponses 1.2

 5.10^{22} électrons libres / cm 3 .


Réponses 1.3

1. $W_{tot} = \frac{1}{2} .m. v^2 - e.U$

2.

3.

4.
$$v_0 > \sqrt{\frac{2.e.U}{m}}$$
.