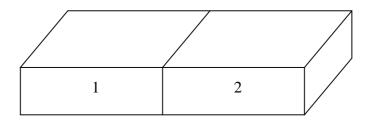
ELE004

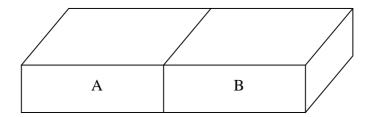

TD4

2007-2008

Phénomènes généraux de la physique des S.C. potentiel de diffusion. La jonction semiconductrice : profils de dopage. Jonction abrupte ; étude de $\rho(x)$, E(x), V(x), l_n , l_p .

exercice 4.1

Soit un barreau de silicium intrinsèque dont la concentration est $n_i=10^{10}\;\text{cm}^{\text{--}3}$:

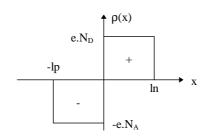


- 1. La région 1 du barreau a été dopé uniformément par des atomes de gallium dont la concentration est égale à 10^{16} cm⁻³. Quelle est la nature du semi-conducteur ainsi réalisé ? Donner les valeurs des concentrations à l'équilibre des électrons et des trous n_0 et p_0 .
- 2. On dope également de manière uniforme la région 2. Quels types d'impuretés faut-il placer pour réaliser une jonction ? Par la suite, on choisira une concentration uniforme d'impuretés égale à 10¹⁶ cm⁻³ dans la région 2.
- 3. Montrer que le dispositif ainsi constitué est bien une jonction abrupte. La zone de transition se trouve-t-elle confinée dans une région particulière ?
- 4. Tracer la concentration de charge $\rho(x)$ dans le semi-conducteur.
- 5. Tracer le champ électrique dans la zone de transition. On rappelle que $\frac{dE}{dx} = \frac{\rho(x)}{\epsilon}$.
- 6. Calculer et tracer V(x), potentiel interne de la jonction.
- 7. Sachant que Vd = 0.025. $Log \frac{N_A N_D}{n_i^2}$, en déduire la largeur de transition w de la jonction (ε = 10^{-10} F/m).

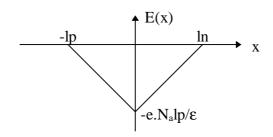
ELE004 2007-2008

**exercice 4.2

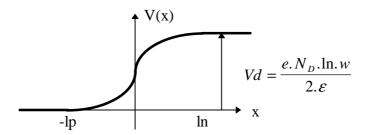
On considère un barreau de silicium intrinsèque dont la concentration est $n_i = 1,5.10^{10}~\text{cm}^{-3}$. On dope uniformément ce semi-conducteur avec des atomes de gallium dont la concentration est égale à $10^{13}~\text{cm}^{-3}$, puis on dope uniformément la région B avec des atomes de phosphore et une concentration égale à $10^{16}~\text{cm}^{-3}$.



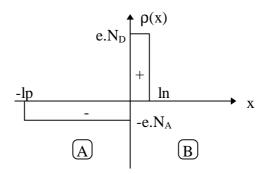
- 1. Montrer qu'il s'agit d'une jonction abrupte unilatérale. Où se situe la partie p ? la partie n ?
- 2. Donner le graphe de la concentration de charges dans la région de déplétion.
- 3. Etablir l'expression de E(x).
- 4. En déduire celle de V(x).
- 5. Calculer Vd. En déduire la largeur de la zone de transition w ainsi que le champ maximal $(\varepsilon_r=12)$.


Réponses 4.1

- 1. S.C type p. $n_0 = 10^4 \text{ cm}^{-3}$, $p_0 = 10^{16} \text{ cm}^{-3}$.
- 2. impuretés donatrices.
- 3. N_A = constante dans 1, N_D = constante dans 2 => jonction abrupte. N_A = N_D => transition également répartie en 1 et 2.


4.

5.


6.

7. $w = 0.414 \mu m$.

Réponses 4.2

- 1. A type p, B type n. N_D et N_A constantes => jonction abrupte.
- 2.

ELE004 2007-2008

- 3. $E(x) = \frac{-e \cdot N_A}{\varepsilon} \cdot (x + lp)$ pour -lp < x < 0, E(x) = 0 ailleurs.
- 4. $V(x) = \frac{e \cdot N_A}{2 \cdot \varepsilon} \cdot (x + lp)^2$ pour -lp < x < 0, V(x) = constante ailleurs (on pose V(x) = 0 pour x < -lp).
- 5. Vd = 0.5 V, $W = 8.14 \mu m$, Emax = 122 kV / m.