
CONSERVATOIRE NATIONAL DES ARTS ET METIERS – Paris –

Examen de rattrapage « Electronique » Septembre 2004

Bases scientifiques A0: 26049

Lundi 20 Septembre 2004, de 18h00 à 20h00

Soit le circuit suivant :

- a) Déterminer R_{eq} la résistance équivalente à R_1, R_2, R_3 et R_4
- b) Donner le modèle équivalent de Thévenin du circuit à gauche des points A et M, et calculer \underline{e}_{th} et \underline{Z}_{th} en fonction de \underline{e} , C et R_{eq} .
- c) Exprimer $\underline{u}_{AM} = f(\underline{e}_{th}, \underline{Z}_{th} \text{ et } \underline{i})$.
- d) En déduire le modèle de Norton aux points A et M, et calculer \underline{i}_N et \underline{Y}_N .
- e) Application Numérique : $e(t) = 10\cos(\omega t)$, $\omega = 10^4 rd/s$, i(t) = 0, $C = 1\mu F$, $R_1 = R_2 = R_3 = R_4 = 100\Omega$. Déterminer $\underline{\mathbf{u}}_{AM}$. Tracer e(t) et $\underline{\mathbf{u}}_{AM}(t)$ sur la même feuille.
- f) Exprimer la fonction de transfert $\underline{T}(j\omega) = \frac{\underline{u}_{AM}}{\underline{e}}$
- g) Exprimer et tracer le diagramme de Bode du gain $G(\omega) = 20\log_{10} T(j\omega)$ et de la phase de la fonction de transfert $\underline{T}(j\omega)$
- h) Rappeler le théorème de Millman. Peut on l'utiliser ici pour calculer \underline{u}_{AM} ?