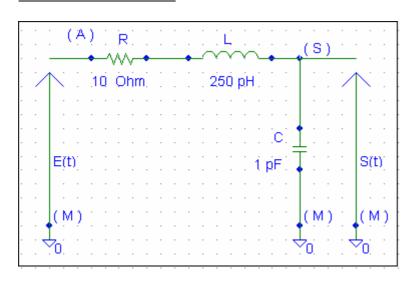
CONSERVATOIRE NATIONAL DES ARTS ET METIERS PARIS

Examen du 17 Mai 2004

« Bases scientifiques EEA » A0: 26049

ELECTRONIQUE

EXERCICE 1:


<u>Soit une impédance complexe suivante</u> : $Z_{RC}(f) = 11 - j \cdot 3,1831$ à f = 1000 Hz = 1 kHz.

Pour réaliser cette impédance, un certain nombre de composants sont à votre disposition :

- Trois résistances : 1Ω ; 10Ω et 1000Ω
- Huit condensateurs : $10 \,\mu\text{F}$; $22 \,\mu\text{F}$; $100 \,\mu\text{F}$ et $100 \,\mu\text{F}$
- a) Choisissez judicieusement parmi les composants disponibles, afin de réaliser cette impédance, et proposer un schéma électrique.
- b) Quels sont les éléments de cette impédance qui consomment de la puissance active et réactive ?

EXERCICE 2:

Soit le circuit ci-dessous :

Forme normalisée:

$$T(p) = \frac{S(p)}{E(p)} = \frac{1}{1 + \frac{2 \cdot \xi}{\omega_0} \cdot p + \frac{p^2}{\omega_0^2}}$$

<u>Avec</u>: $p = j \cdot \omega = j \cdot 2 \cdot \pi \cdot f$

 $S(t) = V_C(t)$: Même chose !!!

- a) Calculer la fonction de transfert, en mettant sous la forme normalisée comme ci-dessus.
- b) Calculer l'impédance $Z_{AM}(j\omega)$ et déterminer pour quelle pulsation ($\omega = \omega_0 = 2 \cdot \pi \cdot f_0$), cette impédance devient-elle réelle, alors donner la valeur de son module et argument.
- c) Identifier les paramètres suivants et faire l'application numérique : ξ : (Amortissement) et ω_0 : (Pulsation propre non amortie), en fonction de (R, L et C).

- d) Quelle remarque pouvez-vous dire sur ξ ? $\zeta > \sqrt{2}/2$ ou $\zeta < \sqrt{2}/2$
- e) Calculer la pulsation de résonance ω_R sachant qu'elle est égale à $\omega_0(1-2\xi^2)$
- f) Calculer $||T(j\omega)||$ pour $\omega = \omega_R$
- g) Que devient $||T(j\omega)||$ et $\phi^{\circ}(j\omega)$ lorsque : $\omega \to 0$ et $\omega \to +\infty$? Tracer approximativement le diagramme de Bode (Gain et Phase).
- h) Quelle est la nature de ce filtre (Passif ou Actif) et le type?
- i) Tracer le diagramme de Fresnel des trois vecteurs correspondant à $V_{\rm R}, V_{\rm L}$ et $V_{\rm C}$.
- j) Retrouver $||T(j\omega)||$ pour $\omega = \omega_R$ à partir du diagramme de Fresnel
- k) Ecrire l'équation différentielle E(t) en fonction de S(t) de ce circuit, sachant que :

$$i(t) = C \cdot \frac{dV_C(t)}{dt} = C \cdot \frac{dS(t)}{dt}$$