
Exercice 1:

Soit le circuit suivant :


1/ Déterminer la fonction de transfert $T(j\omega) = \frac{v_s}{v_E}$. Exprimer cette fonction de transfert sous

la forme d'un produit de fonctions élémentaires. Déterminer le gain $G(\omega) = 20 \log_{10} |T(\omega)|$ et l'argument $\theta(\omega)$ de $T(j\omega)$

2/ Tracer les diagrammes asymptotiques de Bode de $G(\omega)$ et $\theta(\omega)$.A.N.: $R = 100\Omega$, $C = 1\mu F$.

Exercice 2:

Soit le circuit suivant :

1/ Déterminer la fonction de transfert $T(j\omega) = \frac{v_S}{v_E}$. Exprimer $T(j\omega) = \frac{v_S}{v_E}$ sous la forme

suivante :
$$T(j\omega) = \frac{j\frac{\omega}{\omega_0}}{\left(1 + j\frac{\omega}{\omega_1}\right)\left(1 + j\frac{\omega}{\omega_2}\right)}$$
. Avec $\omega_0 = \frac{1}{RC}$.

On utilisera la relation suivante: $1+3j\frac{\omega}{\omega_0}+j^2\frac{\omega^2}{\omega_0^2}=\left(1+j\frac{\omega}{\frac{3-\sqrt{5}}{2}\omega_0}\right)\left(1+j\frac{\omega}{\frac{3+\sqrt{5}}{2}\omega_0}\right)$

2/ Déterminer le gain $G(\omega) = 20 \log_{10} |T(\omega)|$ et l'argument $\theta(\omega)$ de $T(j\omega)$

3/ Tracer les diagrammes asymptotiques de Bode de $G(\omega)$ et $\theta(\omega)$ sur feuille de papier semilog . A.N. : $R=100\Omega$, $C=1\mu F$.

4/ Déterminer le type de filtre, la bande passante et le niveau maximum dans la bande passante.

5/ Calculer la matrice chaîne T du quadripôle en décomposant ce circuit en deux quadripoles (à gauche et à droite des points A et B) puis en utilisant le principe de l'association des quadripôles en cascade. On rappelle les relations suivantes :

$$v_1 = Av_2 - Bi_2$$
$$i_1 = Cv_2 - Di_2$$

6/ Retrouver la fonction de transfert $T(j\omega)$ obtenue dans le 1/