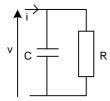

EXAMEN LOIS PHYSIQUES POUR EEA (PHR 002) 13/09/2006

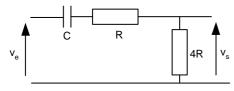
Exercice 1


On considère le circuit suivant :

Déterminer son impédance complexe

Exercice 2

Soit le circuit suivant :



Déterminer son impédance complexe

Pour $R = 100\Omega$, $C = 1\mu F$ et $v = 10\cos 10.10^3 t$, représenter les vecteurs de Fresnel associés au courant d'entrée et à la différence de potentiel aux bornes de ce circuit.

Exercice 3

Soit le circuit suivant

- a) Déterminer la fonction de transfert de ce circuit. Exprimer cette fonction de transfert
 - sous la forme $T(j\omega) = \frac{j\frac{\omega}{\omega_0}}{1+j\frac{\omega}{\omega_1}}$. Exprimer ω_0 et ω_1 en fonction de R et C
- b) Déterminer le gain $G(\omega) = 20\log_{10}|T(\omega)|$ et l'argument $\theta(\omega)$ de la fonction de transfert $T(j\omega)$. Tracer le diagramme asymptotique de Bode de

$$G(\omega) = 20\log_{10}|T(\omega)|$$
 et $\theta(\omega)$. A.N.: $R = 100\Omega$, $C = 1\mu F$

- c) Vérifier simplement la valeur $G(\omega = +\infty)$
- d) On applique une différence de potentiel $v_e(t) = V \cos(\omega t)$ avec $\omega = 2.10^3$ rd/s et V=5Volts. Exprimer $v_s(t)$