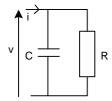
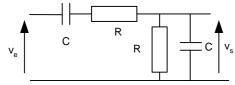

EXAMEN BASES SCIENTIFIQUES


ELECTRONIQUE

1/ On considère le circuit suivant :

Déterminer son impédance complexe


2/ Soit le circuit suivant :

Déterminer son impédance complexe

Pour $R = 100\Omega$, $C = 1\mu F$ et $v = 10\cos 10.10^3 t$, représenter les vecteurs de Fresnel associés au courant d'entrée et à la différence de potentiel aux bornes de ce circuit.

3/ Soit le circuit suivant (circuit de Wien):

Déterminer la fonction de transfert $T(j\omega) = \frac{v_s}{v_E}$ en utilisant les résultats obtenus aux

questions 1 et 2. Exprimer le module $|T(\omega)|$ et l'argument $\theta(\omega)$ de $T(j\omega)$

4/ Mettre
$$T(j\omega)$$
 sous la forme $T(j\omega) = \frac{j\frac{\omega}{\omega_0}}{\left(1+j\frac{\omega}{\omega_1}\right)\left(1+j\frac{\omega}{\omega_2}\right)}$. avec $\omega_0 = \frac{1}{RC}$.

On utilisera la relation suivante:
$$1+3j\frac{\omega}{\omega_0}+j^2\frac{\omega^2}{\omega_0^2}=\left(1+j\frac{\omega}{\frac{3-\sqrt{5}}{2}\omega_0}\right)\left(1+j\frac{\omega}{\frac{3+\sqrt{5}}{2}\omega_0}\right)$$

Déterminer le gain $G(\omega)$ et l'argument $\theta(\omega)$ de $T(j\omega)$

5/ Tracer le diagramme asymptotique de Bode de $G(\omega) = 20 \log_{10} |T(\omega)|$ et $\theta(\omega)$.

A.N. :
$$R = 100\Omega$$
, $C = 1\mu F$

6/Pour quelle valeur de ω le module de la fonction de transfert est il maximum ?

7/ Pour $\omega = \omega_0$, déterminer le gain et le déphasage entre v_s et v_e