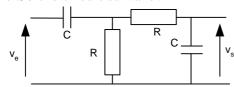

ELECTRONIQUE

1/ Soit le circuit suivant :

a/Exprimer \underline{v} la différence de potentiel aux bornes du condensateur C en fonction de \underline{i} , \underline{e} , R, C et la pulsation ω . En déduire le courant $\underline{i_c}$.


b/ Calculer v(t) et $i_c(t)$ sachant que :

$$e(t) = E \cos(\omega t)$$

$$i(t) = I\cos(\omega t - \pi)$$

$$E = 2 \text{ V}, I = 1\text{A}, \omega = 10^6 rd/s$$
, $R = 1\Omega$, et $C = 1\mu F$

2/ Soit le circuit suivant :

3.1/ Déterminer la fonction de transfert $T(j\omega) = \frac{v_s}{v_E}$ en utilisant les résultats obtenus aux

questions 1 et 2. On posera $\omega_0 = \frac{1}{RC}$

3.2/ La mettre sous la forme
$$T(j\omega) = \frac{j\frac{\omega}{\omega_0}}{\left(1+j\frac{\omega}{\omega_1}\right)\left(1+j\frac{\omega}{\omega_2}\right)}$$
.

3.3/ Déterminer le gain $G(\omega) = 20 \log_{10} |T(\omega)|$ et $\theta(\omega)$

3.4/ Tracer le diagramme asymptotique de Bode de $G(\omega)$ et $\theta(\omega)$. A.N. : $R=100\Omega, C=1\mu F$