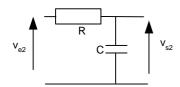
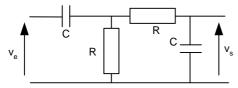

EXAMEN BASES SCIENTIFIQUES


ELECTRONIQUE

1/ On considère le circuit suivant :



Déterminer le générateur de Thévenin équivalent à ce circuit (V_{th} et Z_{th})

2/ Soit le circuit suivant :

- 2.1/ Calculer la fonction de transfert $T(j\omega) = \frac{v_{S2}}{v_{E2}}$
- 2.2/ Donner le diagramme asymptotique de Bode du gain $G(\omega) = 20\log_{10}|T(\omega)|$ et de l'argument $\theta(\omega)$ de la fonction de transfert du circuit.
- 2.3/ En déduire la nature du filtre et la fréquence de coupure f_c . Faire l'application numérique avec $R=100\Omega$ $C=1~\mu F$
- 3/ Soit le circuit suivant :

3.1/ Déterminer la fonction de transfert $T(j\omega) = \frac{v_s}{v_E}$ en utilisant les résultats obtenus aux

questions 1 et 2. On posera $\omega_0 = \frac{1}{RC}$

3.2/ La mettre sous la forme
$$T(j\omega) = \frac{j\frac{\omega}{\omega_0}}{\left(1+j\frac{\omega}{\omega_1}\right)\left(1+j\frac{\omega}{\omega_2}\right)}$$
.

- 3.3/ Déterminer le gain $G(\omega) = 20 \log_{10} |T(\omega)|$ et $\theta(\omega)$
- 3.4/ Tracer le diagramme asymptotique de Bode de $G(\omega)$ et $\theta(\omega)$. A.N. : $R=100\Omega, C=1\mu F$