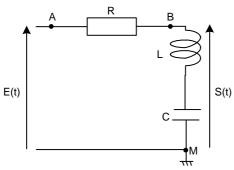
CONSERVATOIRE NATIONAL DES ARTS ET METIERS


PARTIEL BASES SCIENTIFIQUES A0: 26049

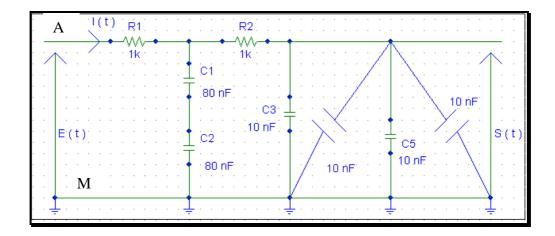
26/04/2004

ELECTRONIQUE

EXERCICE 1:

Soit le circuit ci-dessous :

Forme normalisée :


$$T(p) = \frac{S(p)}{E(p)} = \frac{1 + \frac{p^2}{\omega_0^2}}{1 + \frac{2 \cdot \xi}{\omega_0} \cdot p + \frac{p^2}{\omega_0^2}}$$

<u>Avec</u>: $p = j \cdot \omega$

- a) Calculer la fonction de transfert $T(i\omega)$
- b) Mettre cette fonction de transfert sous la forme normalisée comme ci-dessus.
- c) Identifier les paramètres ξ : (Amortissement) et ω_0 : (Pulsation de réjection), en fonction de (R, L et C).
- d) Faire l'application numérique pour $L = 250 \, p\text{H}$ C = 1pF R = $10 \, \Omega$
- e) Exprimer le module de la fonction de transfert
- f) Calculer l'impédance $Z_{AM}(j\omega)$ et déterminer pour quelle pulsation cette impédance devient-elle réelle, alors donner la valeur de son module et argument.
- g) Que devient le module de la fonction de transfert $T(j\omega)$ lorsque : $\omega \to 0$; $\omega = \omega_0$ et $\omega \to +\infty$?
- h) En déduire l'allure grossière du diagramme de Bode (gain)
- i) Quelle est la nature de ce filtre (Passif ou Actif) et le type ?

EXERCICE 2:

Soit le circuit ci-dessous :

- a) Simplifier ce circuit en utilisant les lois d'association des dipôles de même nature
- b) Calculer l'impédance complexe équivalente $Z_{AM}(j\omega)$
- c) Calculer la fonction de transfert $T(j\omega) = \frac{S(j\omega)}{E(j\omega)}$
- d) Exprimer la fonction de transfert sous la forme $T(j\omega) = \frac{1 + \frac{j\omega}{\omega_0}}{\left(1 + \frac{j\omega}{\omega_0}\right)\left(1 + \frac{j\omega}{\omega_2}\right)}$ en utilisant la

relation
$$1+3\frac{j\omega}{\omega_0} + \frac{j^2\omega^2}{\omega_0^2} = \left(1 + \frac{j\omega}{\omega_0\left(\frac{3}{2} + \frac{\sqrt{5}}{2}\right)}\right) \left(1 + \frac{j\omega}{\omega_0\left(\frac{3}{2} - \frac{\sqrt{5}}{2}\right)}\right)$$

e) Tracer les diagramme de Bode (Gain et Phase)

EXERCICE 3:

<u>Soit une impédance complexe suivant</u> : $Z(f) = 10 + j \cdot 2,35$ à $f = 1000 \,\text{Hz} = 1 \,\text{kHz}$.

- a) Trouver un circuit série permettant de réaliser cette impédance et donner la valeur des composants.
- b) Trouver un autre circuit équivalent parallèle et donner la valeur des composants trouvés.
- c) Soit le courant $i(t) = 5\cos(\omega t)$ traversant l'impédance. Exprimer la différence de potentiel aux bornes de cette impédance u(t)
- d) Tracer le diagramme de Fresnel des trois vecteurs correspondant à u(t), i(t) et Z