
PARTIEL BASES SCIENTIFIQUES

ELECTRONIQUE

Soit le dipôle AM suivant alimenté par le courant sinusoïdal $i(t) = I_0 \sin(wt)$

 $I_0 = 1A$ $w = 40.10^4 \text{ rd/s}$ L = 0.1 mH C = 250 nF $R = 10 \Omega$

- 1/ Calculer l'impédance complexe du réseau entre les nœuds A et B (R en parallèle avec
 L) et en déduire sa valeur numérique et la nature de ce réseau. En donner un modèle équivalent série.
- 2/ Calculer i_1, i_2, \underline{u} , et en déduire les grandeurs sinusoïdales $i_1(t), i_2(t), u(t)$,
- 3/ Calculer l'impédance complexe Z_{AM} du dipôle AM puis v_{AM} et en déduire la différence de potentiel sinusoïdale $v_{AM}(t)$.
- 4/ Tracer l'allure des vecteurs de Fresnel relatifs à $i(t), i_1(t), i_2(t), u(t), v_c(t)$ et $v_{AM}(t)$