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Abstract

In this paper we propose a new timing error detector for timing tracking loops inside the Rake

receiver in spread spectrum systems. Based on a particle filter, this timing error detector jointly tracks

the delays of each path of the frequency selective channels. Instead of using conventional channel

estimator we have introduced a joint time delay and channel estimator without almost no additional

computational complexity. The proposed scheme avoids the drawback of the classical early late gate

detector which is not able to separate closely spaced paths. Simulation results show that the proposed

detectors outperform the conventional early late gate detector in indoor scenarios.

Index Terms

Sequential Monte Carlo, multipath channels, importance sampling, timing estimation.

I. INTRODUCTION

In wireless communications, Direct-Sequence Spread Spectrum (DS-SS) techniques have re-

ceived an increasing interest, especially for the third generation of mobile systems. In DS-SS

systems, the adapted filter typically employed is the Rake receiver. This receiver is efficient to

counteract the effects of frequency-selective channels. It is composed of fingers, each assigned to

one of the most significant channel paths. The outputs of the fingers are combined proportionally

to the power of each path for estimating the transmitted symbols (maximum ratio combining).

Unfortunately, the performance of the Rake receiver strongly depends on the quality of the

estimation of the parameters associated with the channel paths. As a consequence, we have to

estimate the delay of each path using a Timing Error Detector (TED). This goal is generally

achieved in two steps: acquisition and tracking. During the acquisition phase, the number and the

delays of the most significant paths are determined. These delays are estimated within one half

chip from the exact delays. Then, the tracking module refines the first estimation and follows

the delay variations during the permanent phase. The conventional TED used during the tracking

phase is the Early Late Gate-TED (ELG-TED) associated with each path. It is well known that

the ELG-TED works very well in the case of a single fading path. However, in the presence of

multipath propagation, the interference between the different paths can degrade its performance.

In fact, the ELG-TED cannot separate the individual paths when they are closer than one chip

period from the other paths, whereas a discrimination up to Tc/4 can still increase the diversity
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of the receiver (Tc denotes the chip time) [1]. When the difference between the delays of two

paths is contained in the interval 0-1.5 Tc, we are in the presence of unresolvable multipaths.

This scenario corresponds for example to the indoor scenario. The problem of unresolvable

multipaths has been recently analyzed in [2] [3] [4].

Particle filtering (PF) or Sequential Monte Carlo (SMC) methods [5] represent the most

powerful approach for the sequential estimation of the hidden state of a nonlinear dynamic

model. The solution to this problem depends on the knowledge of the Posterior Probability

Density (PPD) of the hidden state given the observations. Except in a few special cases including

linear Gaussian system models, it is impossible to calculate analytically a sequential expression

of this PPD. It is necessary to adopt numerical approximations. The PF methods give a discrete

approximation of the PPD of the hidden state by weighted points or particles which can be

recursively updated as new observations become available.

The first main application of the PF methods was target tracking. More recently, these tech-

niques have been successfully applied in communications, including blind equalization in Gaus-

sian [6] and non-Gaussian [7], [8] noises and joint symbol and timing estimation [9]. For a

complete survey of the communication problems dealt with using PF methods, see [10].

In this paper we propose to use the PF methods for estimating the delays of the paths in

multipath fading channels. Since these methods are based on a joint approach, they provide

optimal estimates of the different channel delays. In this way, we can overcome the problem of

the adjacent paths which causes the failure of the conventional single path tracking approaches

in the presence of unresolvable multipaths. Moreover, we will combine the PF-based TED (PF-

TED) with a conventional estimator for estimating the amplitudes of the channel coefficients. We

will also apply the PF methods to the estimation of the channel coefficients in order to jointly

estimate the delays and the coefficients.

This paper is organized as follows. In Section 2, we will introduce the system model. Then

in Section 3, we will describe the conventional ELG-TED and the PF-TED. In Section 4, we

will present the conventional estimators of the channel coefficients and the application of the PF

methods to the joint estimation of the delays and the channel coefficients. In Section 5, we will

give simulation results. Finally, we will draw a conclusion in Section 5.
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II. SYSTEM MODEL

We consider a DS-SS system sending a complex data sequence {sn} . The data symbols are

spread by a spreading sequence {dm}
Ns−1
m=0 where Ns is the spreading factor.

The resulting baseband equivalent transmitted signal is given by:

e(t) =
∑

n

sn

Ns−1
∑

m=0

dmg(t − mTc − nT ), (1)

where Tc and T are respectively the chip and symbol period and g(t) is the impulse response

of the root-raised cosine filter with a rolloff factor equal to 0.22 in the case of the Universal

Mobile Telecommunications System (UMTS) [11].

h(t, τ) denotes the overall impulse response of the multipath propagation channel with Lh

independent paths (Wide Sense Stationary Uncorrelated Scatterers (WSSUS) model):

h(t, τ) =

Lh
∑

l=1

hl(t)δ(τ − τl(t)). (2)

Each path is characterized by its time-varying delay τl(t) and channel coefficient hl(t).

The signal at the output of the matched filter is given by:

r(t) =

Lh
∑

l=1

hl(t)
∑

n

sn

Ns−1
∑

m=0

dmRg(t − mTc − nT − τl(t)) + ñ(t), (3)

where ñ(t) represents the Additive White Gaussian Noise (AWGN) n(t) filtered by the matched

filter and

Rg(t) =

∫ +∞

−∞

g∗(τ)g(t + τ)dτ (4)

is the total impulse response of the transmission and receiver filters.

Fig. 1 shows the equivalent lowpass transmission model considered in this paper.

The output of the matched filter is used as the input of the Rake receiver. The Rake receiver

model is shown in Fig. 2. The Rake receiver is composed of L branches corresponding to the

L most significant paths. In the l-th branch, the received and filtered signal r(t) is sampled at

time mTc + nT + τ̂l in order to compensate the timing delay τl of the associated path with the

estimate τ̂l. The outputs of each branch are combined to estimate the transmitted symbols. The

output of the Rake receiver is given as :

ŝn = ŝ(nT ) =
1

Ns

L
∑

l=1

ĥ∗
l

Ns−1
∑

m=0

d∗
mr(mTc + nT + τ̂l). (5)
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III. THE TIMING ERROR DETECTION

A. The conventional TED

The Rake receiver needs good timing delays and channel estimators for each path to extract

the most signal power from the received signal and to maximize the signal-to-noise ratio at the

output of Rake receiver.

The conventional TED for DS-SS systems is the ELG-TED. The ELG-TED is devoted to the

tracking of the delay of one path. It is composed of the early and late branches. The signal r(t)

is sampled at time mTc + nT + τ̂l ± ∆. In this paper, we will use ∆ = Tc

2
. We will restrict

ourselves to the coherent ELG-TED where the algorithm uses an estimation of the transmitted

data or the pilots when they are available. The output of a coherent ELG-TED associated with

the l-th path is given by :

xn = x(nT ) = Re

{

ŝ∗nh
∗
l

(n+1)Ns−1
∑

m=nNs

(

r(mTc + τ̂l + Tc/2) − r(mTc + τ̂l − Tc/2)

)

d̂∗
m

}

(6)

The main limitation of the ELG-TED is its discrimination capability. Indeed, when the paths are

unresolvable (separated by less than Tc), the ELG-TED is not able to correctly distinguish and

track the path. This scenario corresponds for example to the indoor case.

These drawbacks motivated the proposed PF-TED.

B. The PF-TED

We propose to use the PF methods in order to jointly track the delay of each individual path

of the channel. We assume that the acquisition phase has allowed us to determine the number

of the most significant paths and to roughly estimate their delay.

The PF methods are used to sequentially estimate time-varying quantities from measures

provided by sensors. In general, the physical phenomenon is represented by a state space

model composed of two equations: the first equation describes the evolution of the unknown

quantities called hidden state (evolution equation) and the second equation the relation between

the measures called observations and the hidden state (observation equation). Given the initial

distribution of the hidden state, the estimation of the hidden state at time t based on the

observations until time t, is known as Bayesian inference or Bayesian filtering. This estimation

can be obtained through the knowledge of two distributions: the PPD of the sequence of hidden
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states from time 1 to time t given the corresponding sequence of observations and the marginal

distribution of the hidden state at time t given the sequence of the observations until time t. Except

in a few special cases including linear Gaussian state space models, it is impossible to analytically

calculate these distributions. The PF methods provide a discrete and sequential approximation

of the distributions. It can be updated when a new observation is available, without reprocessing

of the previous observations. The support of the distributions is discretized by particles, which

are weighted samples evolving in time.

Tracking the delay of the individual channel paths can be interpreted as a Bayesian inference.

The delays are the hidden state of the system and the model (3) of the received samples relating

the observations to the delays represents the observation equation. We notice that this equation

is nonlinear with respect to the delays and as a consequence, we cannot analytically estimate

the delays. To overcome this nonlinearity, we propose to apply the PF methods.

The PF methods have been previously applied for the delay estimation in DS-CDMA systems

[12], [13]. In [12], the PF methods are used to jointly estimate the data, the channel coefficients

and the propagation delay. In [13], the PF methods are combined with a Kalman Filter (KF) to

respectively estimate the delay propagation and the channel coefficients; the information symbols

are assumed known, provided by a Rake receiver. In both papers, the delays of each channel path

are considered known and multiple of the sampling time; therefore, only the propagation delay is

estimated. In this paper, the approach is different. We suppose that each channel path has a slow

time-varying delay, unknown at the receiver. This environment can represent an indoor wireless

communication. We assume that the information symbols are known or have been estimated

essentially for three reasons:

• To reduce the computational complexity of the receiver;

• The channel estimation is typically performed transmitting known pilot symbols, for example

using a specific channel as the Common Pilot Channel (CPICH) of the UMTS;

• The PF methods applied to the estimation of the information symbols perform slightly worse

than simple deterministic algorithms [12], [14].

Firstly, we will apply the PF methods only to the estimation of the delays of each channel path,

considering that the channel coefficients are known. In the next paragraph, we will introduce the

estimation of the channel coefficients.

The structure of the proposed PF-TED is shown in Fig. 3. This estimator operates on samples
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from the matched filter output taken at an arbitrary sampling rate 1/Ts (at least Nyquist sampling).

Then, the samples are processed by means of interpolation and decimation in order to obtain

intermediate samples at the chip rate 1/Tc. These samples are the input of the particle filter. In

order to reduce the computational complexity of the PF-TED and since the time variation of the

delays are slow with respect to the symbol duration, we choose that the particle filter works at

the symbol rate 1/T . Moreover, in order to exploit all the information contained in the chips of

a symbol period, the equations of the PF algorithm are modified. The PF algorithm proposed in

this paper is thus the adaptation of the PF methods to a DS-SS system.

Following [15], the evolution of the delays of the channel paths can be described as a first

order AutoRegressive (AR) process:






















τ1,n = α1τ1,n−1 + v1,n

...

τL,n = αLτL,n−1 + vL,n

, (7)

where τl,n for l = 1, · · · , L denotes the delay of the l-th channel path at time n, α1, · · · , αL

express the possible time variation of the delays from a time to the next one, and v1, · · · , vL

are AWGN with zero mean and variance σ2
v . Note that the time index n is an integer multiple

of the symbol duration.

The estimation of the delays can be achieved using the Minimum Mean Square Error (MMSE)

method or the Maximum A Posteriori (MAP) method. The MMSE solution is given by the

following expectation:

τ̂n = E[τn|r1:n], (8)

where τn = {τ1,n, · · · , τL,n} and r1:n is the sequence of received samples from time 1 to n.

The calculation of (8) involves the knowledge of the marginal distribution p(τn|r1:n). Unlike the

MMSE solution that yields an estimate of the delays at each time, the MAP method provides

the estimate of the hidden state sequence τ1:n = {τ1, · · · , τn}:

τ̂1:n = arg max
τ1:n

p(τ1:n|r1:n). (9)

The calculation of (9) requires the knowledge of the PPD p(τ1:n|r1:n).

The simulations give similar results for the MMSE method and the MAP method. Hence, we

choose to adopt the MMSE solution as in [9]. In order to obtain samples from the marginal
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distribution, we use the Sequential Importance Sampling (SIS) approach [16]. Applying the

definition of the expectation, (8) can be expressed as follows:

τ̂n =

∫

τnp(τn|r1:n)dτn. (10)

The aim of the SIS technique is to approximate the marginal distribution p(τn|r1:n) by means

of weighted particles:

p(τn|r1:n) ≈

Np
∑

i=1

w̃(i)
n δ(τn − τ (i)

n ), (11)

where Np is the number of particles, w̃
(i)
n is the normalized importance weight at time n associated

with the particle i and δ(τn − τ
(i)
n ) denotes the Dirac delta centered in τn = τ

(i)
n .

The phases of the PF-TED based on the SIS approach are summarized below.

1. Initialization: In this paper, we apply the PF methods for the tracking phase, assuming

that the number of the channel paths and the initial value of the delay for each path have been

estimated during the acquisition phase [17]. We assume that the error on the delay estimated

by the acquisition phase belongs to the interval (−Tc/2, Tc/2). Hence, the a priori probability

density p(τ0) can be considered uniformly distributed in (τ̂0 − Tc/2, τ̂0 + Tc/2), where τ̂0 is the

delay provided by the acquisition phase. Note that the PF methods can be used also for the

acquisition phase. However, the number of particles has to be increased, because we have no a

priori information on the initial value of the delays.

2. Importance sampling: The time evolution of the particles is achieved with an importance

sampling distribution. When rn is observed, the particles are drawn according to the importance

function. In general, the importance function is chosen to minimize the variance of the importance

weights associated with each particle. In fact, it can be shown that the variance of the importance

weights can only increase stochastically over time [16]. This means that, after a few iterations

of the SIS algorithm, only one particle has a normalized weight almost equal to 1 and the other

weights are very close to zero. Therefore, a large computational effort is devoted to updating

paths without almost no contribution to the final estimate. In order to avoid this behavior, a

resampling phase of the particles is inserted among the recursions of the SIS algorithm. To limit
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this degeneracy phenomenon, we need to use the optimal importance function [16], given by:

π(τ (i)
n |τ

(i)
1:n−1, r1:n) = p(τ (i)

n |τ
(i)
n−1, rn). (12)

Unfortunately, the optimal importance function can be analytically calculated only in a few

cases, including the class of models represented by a Gaussian state space model with linear

observation equation. In this case, the observation equation (3) is nonlinear and thus, the optimal

importance function cannot be analytically determined. We can consider two solutions to this

problem [16]:

1) the a priori importance function p(τ
(i)
n |τ

(i)
n−1);

2) an approximated expression of the optimal importance function by linearization of the

observation equation about τ
(i)
l,n = αlτ

(i)
l,n−1 for l = 1, · · · , L.

Since the second solution involves the derivative calculation of the nonlinear observation equation

and hence very complex operations, we choose the a priori importance function as in [9].

Considering that the noises vl,n for l = 1, · · · , L in (7) are Gaussian, the importance function

for each delay l is a Gaussian distribution with mean αlτ
(i)
l,n−1 and variance σ2

v .

3. Weight update: The evaluation of the importance function for each particle at time n enables

the calculation of the importance weights [16]:

w(i)
n = w

(i)
n−1

p(rn|τ
(i)
n )p(τ

(i)
n |τ

(i)
n−1)

π(τ
(i)
n |τ

(i)
1:n−1, r1:n)

. (13)

This expression represents the calculation of the importance weights if we only consider the

samples of the received signal at the symbol rate. However, in a DS-SS system we have additional

information provided by Ns samples for each symbol period due to the spreading sequence.

Consequently, we modify (13) taking into account the presence of a spreading sequence. Indeed,

observing that the received samples are independent, the probability density p(rn|τ
(i)
n ) at the

symbol rate can be written as:

p(rn|τ
(i)
n ) =

(n+1)Ns−1
∏

m=nNs

p(rm|τ
(i)
n ). (14)

Considering (3) at the chip rate and recalling the assumptions of known symbols, the probability

density p(rm|τ
(i)
n ) is Gaussian. Typically, the received sample rm is complex. For the calculation

December 24, 2003 DRAFT



10

of the Gaussian distribution, we can write rm as a bi-dimensional vector with components being

the real part and the imaginary part of rm. The probability density p(rm|τ
(i)
n ) is thus given by:

p(rm|τ
(i)
n ) =

1

πσ2
n

exp

{

−
1

σ2
n

∣

∣rm − µ(i)
m

∣

∣

2
}

, (15)

where σ2
n is the variance of the AWGN ñ(t) in (3) and the mean µ

(i)
m is obtained by:

µ(i)
m =

L
∑

l=1

hl,nsn

m+3
∑

k=m−3

dkRg(mTc − kTc − nT − τ
(i)
l,n). (16)

In order to reduce the computational complexity of the PF-TED, in (16) we have assumed that

the contribution of the raised cosine filter Rg to the sum on the spreading sequence is limited

to the previous 3 and next 3 samples. By substitution of (15) in (14), (14) becomes:

p(rn|τ
(i)
n ) =

(

1

πσ2
n

)Ns

exp

{

−
1

σ2
n

(n+1)Ns−1
∑

m=nNs

∣

∣rm − µ(i)
m

∣

∣

2
}

. (17)

Assuming the a priori importance function, (13) yields:

w(i)
n = w

(i)
n−1p(rn|τ

(i)
n ) = w

(i)
n−1

(

1

πσ2
n

)Ns

exp

{

−
1

σ2
n

(n+1)Ns−1
∑

m=nNs

∣

∣rm − µ(i)
m

∣

∣

2
}

. (18)

Finally, the importance weights in (18) are normalized using the following expression:

w̃(i)
n =

w
(i)
n

∑Np

j=1 w
(j)
n

. (19)

4. Estimation: By substitution of (11) into (10), we obtain at each time the MMSE estimate:

τ̂n =

Np
∑

i=1

w̃(i)
n τ (i)

n . (20)

5. Resampling: This algorithm presents a degeneracy phenomenon. After a few iterations of the

algorithm, only one particle has a normalized weight almost equal to 1 and the other weights

are very close to zero. This problem of the SIS method can be eliminated with a resampling of

the particles. A measure of the degeneracy is the effective sample size Neff , estimated by:

N̂eff =
1

∑Np

i=1(w̃
(i)
n )2

. (21)

When N̂eff is below a fixed threshold Nthres, the particles are resampled according to the weight

distribution [16]. After each resampling task, the normalized weights are initialized to 1/Np.
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IV. THE ESTIMATION OF THE CHANNEL COEFFICIENTS

A. The conventional estimators

Channel estimation is performed using the known pilot symbols. If we suppose that the channel

remains almost unchanged during the slot, the conventional estimator of the channel coefficients

of the lth path is obtained by correlation using the known symbols [18]:

ĥl =
1

NpilotNs

Npilot−1
∑

n=0

Ns−1
∑

m=0

s∗nd
∗
mr(mTc + nT + τ̂l,n), (22)

where Npilot is the number of pilots in a slot. For each path, the received signal is sampled at

time mTc + nT + τ̂l,n in order to compensate its delay. Then the samples are multiplied by the

despread sequence and summed on the whole sequence of pilot symbols. The problem of this

estimator is that when the delays are unresolvable, the estimation becomes biased. To eliminate

this bias, we can use an estimator based on the Maximum Likelihood (ML) criterion. In [19] [1],

a simplified version of the ML estimation is proposed. The channel coefficients which maximize

the ML criterion are given by :

ĥ = P
−1

a (23)

where ĥ = (ĥ1, . . . , ĥL), P is a L × L matrix with elements Pij = Rg(τi,n − τj,n) and a is the

vector of the channel coefficients calculated using (22).

B. The PF-based joint estimation of the delays and the channel coefficients

We can apply the PF methods to jointly estimate the delays of each path and the channel

coefficients with a very low additional cost in terms of computational complexity. This is a

suboptimal solution, since the observation equation (3) is linear and Gaussian with respect to

the channel coefficients. The optimal solution is represented by a Kalman Filter (KF). However,

combining the PF methods and the KF to jointly estimate the delays and the channel coefficients

involves the implementation of a KF. It is better to use the particles employed for the delay

estimation and to associate to each particle the estimation of the channel coefficients.

In this case, the hidden state is composed of the L delays and the L channel coefficients of

each individual path. When a particle evolves in time, its new position is thus determined by

the evolution of the delays and the evolution of the channel coefficients. The delays evolve as

described for the PF-TED. For the channel coefficients, we assume that the time variations are
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slow as for example in indoor environments. Hence, the evolution of the channel coefficients

can be expressed by the following first order AR model:






















h1,n = β1h1,n−1 + z1,n

...

hL,n = βLhL,n−1 + zL,n

, (24)

where β1, · · · , βL describe the possible time variation of the channel coefficients from a time to

the next one and z1, · · · , zL are AWGN with zero mean and variance σ2
z . Notice that this joint

estimator operates at the symbol rate as the PF-TED.

As for the delays, we only consider the MMSE method for the estimation of the channel

coefficients and we use a prior importance function:

π(h(i)
n |h

(i)
1:n−1, r1:n) = p(h(i)

n |h
(i)
n−1), (25)

where hn = {h1,n, · · · , hL,n}. Considering that the noises zl,n for l = 1, · · · , L in (24) are

Gaussian, the importance function for the channel coefficients is a Gaussian distribution with

mean βlh
(i)
l,n−1 and variance σ2

z . To determine the positions of the particles at time n from the

positions at time n − 1, each particle is drawn according to p(τ
(i)
n |τ

(i)
n−1) and (25).

The calculation of the importance weights is very similar to the case of the PF-TED. The

only difference is that the channel coefficients hl,n are replaced by the support of the particles

h
(i)
l,n.

V. SIMULATION RESULTS

In this section, we will compare the performance of the conventional ELG-TED and the

PF-TED. In order to demonstrate the gain achieved using the latter, we will consider different

indoor scenarios with a two Rayleigh path channel with the same average power on each path

and a maximum Doppler frequency of 19 Hz corresponding to a mobile speed of 10 Km/h for

a carrier frequency of 2GHz. The simulation setup is compatible with the UMTS standard. In

these conditions, the time variations of the channel delays can be expressed by the model (7),

with α1 = · · · = αL = 0.99999 and σ2
v = 10−5 [15]. Moreover, the time variations of the channel

coefficients can be represented by the model (24), β1 = · · · = βL = 0.999 and σ2
z = 10−3.
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In these simulations, a CPICH is used. In each slot of CPICH, 40 pilot symbols equal to 1

are expanded into a chip level by a spreading factor of 64. The spreading sequence is a PN

sequence changing at each symbol.

A. Tracking performance

Let’s assume that the channel coefficients are known to evaluate the TED’s tracking capacity

and the simulation time is equal to 0.333s, corresponding to 500 slots. We have firstly considered

the delays of the two paths varying according to the following model:






τ1,n = α1τ1,n−1 + v1,n

τ2,n = α2τ2,n−1 + v2,n,
(26)

where α1 = α2 = 0.999, σ2
v,1 = σ2

v,2 = 0.001, τ1,0 = 0 and τ2,0 = 1.

Fig. 4 shows one realization of the considered delays and the tracking performance of two

ELG-TED used for the estimation of the two delays. We assume that Es/No = 10dB, where Es

is the energy per symbol and No is the unilateral spectral power density. The classical ELG-TED

presents difficulties to follow the time variation of the two delays, especially when the delay

separation becomes less than 1 Tc.

However, it is very important for the TED to distinguish the different paths of the channel to

enable the Rake receiver to exploit the diversity contained in the multipath nature of the channel.

In [1], it has been shown that the gain in diversity decreases as the separation between the paths

decreases. In particular, a loss of 2.5 dB in the performance of the matched filter bound for a

BER equal to 10−2, passing from Tc to Tc/4, has been observed. Moreover, it has been noted

an interesting gain in diversity if the TED distinguishes paths separated by more than Tc/4.

On the other hand, it has been found that the performance of the matched filter bound for a

separation of Tc/8 is very close to the one obtained with only one path. Consequently, the TED

discrimination capacity has to be equal to Tc/4. Unfortunately, the ELG-TED mistakes all the

paths with a delay separation less than 1 Tc. In Fig. 5, we can observe how the discrimination

capacity of the TED can be improved using the PF methods.

In order to better highlight this behavior, we have fixed the delay of the first path at 0 and the

delay of the second path is decreasing linearly from 2Tc to 0 over a simulation time of 0.333s

corresponding to 500 slots. We assume that Es/No = 10dB, where Es is the energy per symbol

and No is the unilateral spectral power density.
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Firstly, we consider that the channel coefficients are known to evaluate the TED’s tracking

capacity. Fig. 6 gives a representative example of the evolution of the two estimated delays using

two ELG-TED. As soon as the difference between the two delays is lower than 1 Tc, due to

the correlation between the two paths, the estimated delays tend to oscillate around each real

delays. The ELG-TED are no longer able to perform the correct tracking of the delays. On the

other hand, as shown in Fig. 8 the proposed PF-TED is able to track almost perfectly the two

paths. These results have been obtained using a particle filter with only 10 particles.

Then, we have introduced the estimation of the channel coefficients into the TED. Fig. 7

shows the results obtained with two ELG-TED combined with the conventional estimator based

on the correlation. As soon as the difference between the two delays is lower than 1 Tc, the

detectors no longer recognize the two paths: the weaker path merges with the stronger one.

In Fig. 9, the PF-TED is also associated with the conventional estimator of the channel

coefficients based on the correlation. When the delay of the second path becomes less than 1Tc,

the channel estimator decreases its capacity to track the time variations of the channel coefficients

and the PF-TED cannot track the delays of the two paths. To improve the channel estimation,

we associate the PF-TED with the ML estimator, as shown in Fig. 10. In this case, the PF-TED

can track the delay of the second path up to Tc/2. For smaller delays, the PF-TED continues

to distinguish the two paths, but it cannot follow the time variations of the second delay. The

delay of the second path remains close to the values estimated at Tc/2.

Using the PF methods to jointly estimate the delays and the channel coefficients, we can notice

in Fig. 11 that the PF-TED can track the time variations of the second path. This solution implies

only a low additional cost in terms of computational complexity with respect to the PF-TED,

since it exploits the set of particles used for the delay estimation for the channel coefficient

estimation.

B. Mean square error of the delay estimators

In this section, we will compare the Mean Square estimation Error (MSE) estimating τn of

the ELG-TED and the PF-TED with the lower posterior Cramer Rao Bound (PCRB). In the

Bayesian context of this paper, the PCRB [21] is more suitable than the Cramer Rao Bound [20]

to evaluate the MSE of varying unknown parameters.

The PCRB for estimating τn using r1:n has the form :
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E(τ̂n − τn)2 ≥ J−1
n,n (27)

where Jn,n is the right lower element of the n × n Fisher information matrix.

In [21], the authors have shown how to evaluate recursively Jn,n. For our application, the

nonlinear filtering system is











τn+1 = ατn + vn

rn = zn(τn) + ñn,
(28)

where the second relation represents the nonlinear observation equation (3) at chip rate.

Since the spreading sequence is different at each chip time, we have to evaluate zn(τn) at this

rate.

From the general recursive equation given in [21] the sequence {Jn,n} can be obtained as

follows :

Jn+1,n+1 = σ−1
v + E[Oτn+1

zn+1(τn+1)]
2σ−1

n − (ασ−1
v )2(Jn,n + α2σ−1

v )−1 (29)

In order to calculate E[Oτn+1
zn+1(τn+1)], we have applied a Monte Carlo evaluation. We

generate M i.i.d. state trajectories of a given length Nt {τ i
0, τ

i
1, . . . τ

i
Nt
} with 1 ≤ i ≤ M by

simulating the system model defined in (28) starting from an initial state τ0 drawn from the a

priori probability density p(τ0). For the calculation, we fixed M = 100.

In figure 12, we show the comparison of the PCRB with the MSE estimating τn of the ELG-

TED and PF-TED. For both algorithms, we use an uniform initial pdf p(τ0). For the PF-TED,

the 10 particles were initialized uniformly in the interval {−Tc/2, Tc/2}. The signal to noise

ratio Es/N0 was fixed to 10 dB. We can see in the figure 12 that the PF-TED outperforms the

ELG-TED and reach the PCRB bound after 15 slots. The slow convergence of the ELG-TED

and PF-TED compared to the PCRB can be explained since the two TED are updated at each

symbol while the PCRB bound is calculated for each chip.

C. Performance evaluation

Fig. 13 shows the bit error rates (BER) versus Es/No considering a two path channel with

the same average power on each path. The delays of the first and second paths were respectively
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fixed at 0 and 1 Tc. The same maximum Doppler frequency as above was used. The BER values

have been averaged over 50000 bits.

When using two ELG-TED, except when the channel is known the performance are very poor

compare to the maximum achievable performance (known delays and channel coefficients). On

the other hand, the PF-TED with channel coefficients known or estimated reaches the optimal

performance. We can conclude that the considered TED must be able to separate the different

paths of the channel, otherwise the performance of the Rake receiver breaks down.

VI. CONCLUSIONS

In this paper we have proposed to use the PF methods in order to track the delay of the

different channel paths. We have assumed that an acquisition phase has already provided an

initial estimation of these delays.

We have firstly considered that the channel coefficients are known. We have compared the

tracking capacity of the conventional ELG-TED and the proposed PF-TED. We have shown that

when the delays of the channel paths become very close (less than 1Tc), the ELG-TED is unable

to track the time variations of the delays. However, the PF-TED continues to track the delays.

We have introduced the channel coefficient estimation to the TED. We have considered two

classical methods: the estimation based on the correlation using pilot symbols and the estimation

based on the ML criterion. We have shown that the ELG-TED with estimation of the channel

coefficients loses the capacity to distinguish the paths when the delays are very closed. On the

other hand, the PF-TED associated with the two classical channel estimator is able to separate

the different paths. However, for very close delays the channel estimators prevent to the PF-TED

to track the time variations of the delays. We have proposed to estimate jointly the delays and

the channel coefficients using the PF methods to avoid this loss of tracking. We have found that

the joint estimation enables a better tracking of the delays.

Finally, we have seen that it is very important for the Rake receiver that the TED can

distinguish the different paths of the channel. We have observed that in the case of unresolvable

paths, the ELG-TED confuses the paths and the performance of the Rake receiver are very poor.

As conclusion, we can say that the PF-TED based on the joint estimation of the delays

and the channel coefficients can be a good substitute of the classical ELG-TED, specially for
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indoor wireless communications. Moreover, the computational complexity of the PF-TED is very

limited, seen that we have used only 10 particles.
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Fig. 1. Equivalent lowpass transmission system model.
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Fig. 2. Rake receiver model.
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Fig. 3. Structure of the proposed PF-TED.
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Fig. 4. Delay tracking with the conventional ELG-TED.
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Fig. 5. Delay tracking with the PF-TED.
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Fig. 6. Delay tracking with the conventional ELG-TED.
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Fig. 7. Delay tracking with the conventional ELG-TED associated with a conventional channel coefficient estimator

based on the correlation.
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Fig. 8. Delay tracking with the PF-TED.
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Fig. 9. Delay tracking with the PF-TED associated with a conventional channel coefficient estimator based on the

correlation.
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Fig. 10. Delay tracking with the PF-TED associated with a conventional channel coefficient estimator based on

the ML.
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Fig. 11. Delay tracking with a joint delay and channel coefficient estimator based on the PF methods.
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Fig. 12. Comparison of the PCRB with the MSE estimating τn of ELG-TED and PF-TED
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