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Abstract

Orthogonally multiplexed Quadrature Amplitude Modulation (O-QAM) with Filter Banks based

Multi Carrier modulation (FBMC) is a multi-carrier modulation scheme that can be considered as an

alternative to the conventional orthogonal frequency division multiplexing (OFDM) with cyclic prefix

(CP) for transmission over multi-path fading channels. However, as OQAM-based FBMC is based on real

orthogonality, transmission over a complex-valued channel makes the decoding process more challenging

compared to CP-OFDM case. Moreover, if we apply Multiple Input Multiple Output (MIMO) techniques

to OQAM-based FBMC, the decoding schemes are different from the ones used in CP-OFDM. In this

paper, we consider the combination of OQAM-based FBMC with single delay Space-Time Trellis Coding

(STTC). We extend the decoding process presented earlier in the case of Nt = 2 transmit antennas to

greater values of Nt. Then, for Nt ≥ 2, we make an analysis of the theoretical and simulation perfor-

mance of ML and Viterbi decoding. Finally, to improve the performance of this method, we suggest an

iterative decoding method. We show that the OQAM-based FBMC iterative decoding scheme can slightly

outperform CP-OFDM.
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I. Introduction

Orthogonal Frequency Division Multiplexing (OFDM) is an efficient Multi Carrier Mod-

ulation (MCM) capable of fighting against multi-path fading channels. Its robustness to

multi-path propagation effects comes from the insertion of a CP and is therefore obtained

at the price of a reduced spectral efficiency. Furthermore, the rectangular shape of OFDM

symbols leads to a sin(x)/x frequency spectrum. Studies have been conducted in order to

find better MCM schemes w.r.t. the frequency and/or time-frequency localization criteria.

As suggested in [1], [2], [4], OFDM/OQAM also called as OQAM-based Filter Bank

Multi Carrier (FBMC) is a MCM scheme which may be the appropriate alternative. In

OFDM/OQAM each subcarrier is modulated with Offset Quadrature Amplitude Modula-

tion (OQAM). This principle has been introduced in [5], [6], but it is only recently [1] that

FBMC has been presented as a viable alternative to OFDM. Compared to OFDM that

transmits complex-valued symbols at a given symbol rate, OQAM-based FBMC transmits

real-valued symbols at twice this symbol rate. Therefore, a similar spectral efficiency is

achieved by both systems. In practice, OQAM-based FBMC may provide a higher useful

bit rate since it operates without the addition of a CP. Furthermore, with a pulse shaping

that can be optimized according to given channel characteristics, its performance can be

improved. However, all the interesting features of OQAM-based FBMC come at the price

of a relaxation of the orthogonality conditions that only hold in the real field. At the

receive side the data is carried only by the real component of the signal (assuming a 0 or π
2

phase modulation term). Thus, the imaginary part appears as an interference term. This

interference term is a source of problem in the presence of the complex valued channel

as it destroys the real orthogonality. Therefore, when combining OQAM-based FBMC

with MIMO technique such as Space Time Block Codes (STBC) or Space-Time Trellis

Coding (STTC) [9], [10], the decoding process cannot be done in the same way as with

CP-OFDM modulation. In the case of a single delay STTC chain with 2 transmit and 1

receive antennas, [3] proposed a simple preprocessing to cancel this imaginary interference

component. In this paper, we extend the proposed method in [3] to Nt transmit antennas

and introduce an iterative decoding method. In section II, we give a short description of

the discrete-time OQAM modulation. Then, in section III, we provide an overview of the
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STTC single delay detection. In section IV-A, we provide a theoretical performance anal-

ysis of ML and Viterbi decoding. Section V is devoted to the iterative decoding method

in order to improve the performance of the previous decoding method. Simulation results

are presented in section VI. Conclusions and perspectives are given in section VII. In the

rest of the paper, FBMC will be used to denote OQAM-based FBMC.

II. The FBMC modulation

Using the baseband discrete time model, we can write at the transmit antenna i, the

OQAM-based FBMC signal as follows [1]:

si[m] =
M−1∑

k=0

∑

n∈Z

dk,n,i g[m − nN ]ej 2π
M

k(m−D
2

)ejφk,n

︸ ︷︷ ︸

gk,n[m]

(1)

where M = 2N is the even number of sub-carriers, F0 = 1/T0 = 1/2τ0 is the subcarrier

spacing, φk,n is an additional phase term, g is the pulse shape and D is the delay parameter

associated to the length of the pulse shape. The transmitted symbols dk,n,i are real-valued

data transmitted by antenna i. They are obtained from a 22K-QAM constellation, taking

the real and imaginary parts of these complex-valued symbols of duration T0 = 2τ0, where

τ0 denotes the time offset between the two parts [7], [1], [2], [4]. For a given subcarrier k

and symbol time index n, the real and imaginary parts are driven by the phase term φk,n

given by

φk,n = φ0 +
π

2
(n + k) (mod π) (2)

where φ0 can be arbitrarily chosen. Here, we set φ0 = 0 and g is assumed to be real-valued.

Assuming a distortion-free channel, a perfect reconstruction of real symbols is obtained

owing to the following real orthogonality condition:

ℜ{〈gk,n|gp,q〉} = ℜ{
∞∑

m=−∞

gk,n[m]g∗
p,q[m]} = δk,pδn,q,

where, δk,p = 1 if k = p and δn,q = 0 if n 6= q. However, in practice for transmission

over a realistic channel, the orthogonality property is lost, leading to inter symbol and

inter carrier interferences. It has been shown in previous studies [3] that, when combining

FBMC with single delay STTC in presence of 2 transmit and one receive antennas, specific
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processing should be done in order to remove the interference terms. In this paper, we

will extend this method for Nt ≥ 2 antennas.

III. Single delay STTC in FBMC with Nt transmit antennas

A. Transmission model

Let us first assume that only the ith antenna is transmitting. At the receiver side, the

demodulated signal yk,n at the frequency k and time instant n (nτ0) can be written as:

yk,n = Hk,n,idk,n,i + jIk,n,i + υk,n,

where,

• Hk,n,i is the channel coefficient between transmit antenna i and the receiver, at subcarrier

k and time instant n.

• υk,n is the noise component at subcarrier k and time instant n.

•

Ik,n,i = (−j)
∑

(k′,n′)6=(k,n)

Hk′,n′,idk′,n′,i

∞∑

m=−∞

gk,n[m]g∗
k′,n′[m].

We assume that we have a prototype filter well localized in time and frequency. This

implies that, in the previous equation the main contribution comes from the closest neigh-

borhood i.e. gk,n[m]g∗
k′,n′[m] takes a significant value only for |k− k′| ≤ 1 and |n−n′| ≤ 1.

Moreover, if we assume that the channel is constant over a set of at least three consecutive

sub-carriers and a set of at least three consecutive time indexes, then we can rewrite the

previous expression as in [11]:

Ik,n,i ≈ Hk,n,i (−j)
∑

(k′,n′)6=(k,n)

dk′,n′,i

∞∑

m=−∞

gk,n[m]g∗
k′,n′[m]

︸ ︷︷ ︸

uk,n,i

. (3)

Thus, the demodulated signal can be approximated by:

yk,n ≈ Hk,n,i(dk,n,i + juk,n,i) + υk,n. (4)

Throughout the remainder of the paper, we will consider (4) as the expression of the

signal at the output of the demodulator.
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FBMC MODULATOR
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Z
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Fig. 1. FBMC Single delay STTC transmitter

B. Problem statement

Let us consider the single delay STTC scheme with Nt antennas as shown in Fig. 1.

The real data to be transmitted are modulated by an FBMC modulator and transmitted

by the first antenna. The same stream of data is delayed by 2ni real data before being

modulated by FBMC modulator and transmitted by the nth
i antenna. The delay 2ni is

chosen to have the same delay as with a CP-OFDM system although a delay of ni could

also be chosen. We denote by ak,n the real data from the main stream of data at frequency

k and time index n. Thus, at a given sub-carrier k the transmission is given at antenna i

by: dk,n,i = ak,n−2i. At the receiver side, the demodulated signal can be written as:

yk,n =

Nt−1∑

i=0

Hk,n,i(dk,n,i + juk,n,i) + υk,n

where υk,n is the noise component at the sub-carrier k and time instant n. As the same

stream of data is transmitted over the Nt antennas, we have: uk,n,i = uk,n−2i,0 = bk,n−2i. In

the remainder of the paper, we will assume a channel constant over time i.e. (Hk,n,i = Hk,i),
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we get:

yk,n =

Nt−1∑

i=0

Hk,i (ak,n−2i + jbk,n−2i)
︸ ︷︷ ︸

xk,n−2i

+υk,n. (5)

The problem is to recover from yk,n the data ak,n. The presence of the term bk,n−2i makes

the decoding process from yk,n difficult. Some processing should be carried out in order

to recover the real data.

IV. Interference cancellation method

A. Cancellation procedure

For the case Nt = 2, it has been shown in [3] that, if we define zk,n+2 as:

zk,n+2 = H∗
k,1yk,n + H∗

k,0yk,n+2. (6)

Then we have:

ℜ{zk,n+2} = ℜ{H∗
k,1yk,n + H∗

k,0yk,n+2} = |Hk,1|
2ak,n−2 + 2ℜ{H∗

k,1Hk,0}ak,n + |Hk,0|
2ak,n+2 + wk,n+2,

(7)

with wk,n+2 = ℜ{H∗
k,1υk,n + H∗

k,0υk,n+2}. Let 2Lf denotes the frame length, for e ∈ {0, 1},

if we denote by:

te =
[

ℜ{zk,e} ℜ{zk,e+2} . . . . . . ℜ{zk,e+2(Lf−1)}
]T

,

ae =
[

ak,e ak,e+2 . . . . . . ak,e+2(Lf−1)

]T

, we =
[

wk,e wk,e+2 . . . . . . wk,e+2(Lf−1)

]T
1

and


















|Hk,0|
2

0 . . . . . . 0

2ℜ{Hk,0H
∗

k,1} |Hk,0|
2

. . . . . .
...

|Hk,1|
2

2ℜ{Hk,0H
∗

k,1} |Hk,0|
2

0
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 . . . |Hk,1|
2

2ℜ{Hk,0H
∗

k,1} |Hk,0|
2


















︸ ︷︷ ︸

G2

, (8)

we have:

te = G2ae + we. (9)

1(.)T denotes the transpose operation and (.)H the transpose conjugate one.
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In this last equation, the imaginary interference term is cancelled. Thus the decoding

process can be easily carried out either by using Maximum Likelihood (ML) decoding,

Viterbi decoding, or linear equalization such as Zero Forcing (ZF) or Minimum Mean

Square Error (MMSE) decoding. More generally with Nt ≥ 2, let us note and compute:

zk,n+2Nt−2 =
Nt−1∑

p=0

H∗
k,Nt−1−pyk,n+2p (10)

=

Nt−1∑

p=0

Nt−1∑

i=0

H∗
k,Nt−1−pHk,ixk,n+2p−2i +

Nt−1∑

p=0

H∗
k,Nt−1−pυk,n+2p

︸ ︷︷ ︸

nk,n+2Nt−2

=

Nt−1∑

i=1

i−1∑

p=0

H∗
k,Nt−1−pHk,ixk,n+2p−2i

︸ ︷︷ ︸

Bk,n

+

Nt−1∑

i=0

∑

p=i

H∗
k,Nt−1−pHk,ixk,n+2p−2i

︸ ︷︷ ︸

Ak,n

+
Nt−1∑

i=0

Nt−1∑

p=i+1

H∗
k,Nt−1−pHk,ixk,n+2p−2i

︸ ︷︷ ︸

Ck,n

+
Nt−1∑

p=0

H∗
k,Nt−1−pυk,n+2p.

Ak,n is given by:

Ak,n = xk,nµk (11)

details for this equation are given in appendix I-A. The expression of Bk,n is given by:

Bk,n =

Nt−1∑

q=1

xk,n−2qγq, (12)

where γq are real valued quantities which depend only on the channel coefficients as shown

in appendix I-B. The expression of Ck,n is given by:

Ck,n =
Nt−1∑

q=1

xk,n+2qβq, (13)

where βq are real valued quantities which depend only on the channel coefficients as shown

in appendix I-C. Therefore,

zk,n+2Nt−2 =

Nt−1∑

q=1

γqxk,n−2q + µkxk,n +

Nt−1∑

q=1

βqxk,n+2q +

Nt−1∑

p=0

H∗
k,Nt−1−pυk,n+2p.
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Thus, by noting: t
(1)
k,n+2Nt−2 = ℜ{zk,n+2Nt−2}, we have:

t
(1)
k,n+2Nt−2 =

Nt−1∑

q=1

γqak,n−2q + µkak,n +

Nt−1∑

q=1

βqak,n+2q + ℜ{

Nt−1∑

p=0

H∗
k,Nt−1−pυk,n+2p}

︸ ︷︷ ︸

wk,n+2Nt−2

.
(14)

For e ∈ {0, 1}, we note: te =
[

tk,e tk,e+2 . . . . . . tk,e+2(Lf−1)

]T

,

we =
[

ℜ{wk,e} ℜ{wk,e+2} . . . . . . ℜ{wk,e+2(Lf−1)}
]T

, and

GNt
=





























βNt−1 0 . . . . . . . . . . . . . . . . . . . . . . . . 0

βNt−2 βNt−1 0 . . . . . . . . . . . . . . . . . . . . .
...

...
. . .

. . .
. . . . . . . . . . . . . . . . . . . . .

...

β1

. . .
. . .

. . .
. . . . . . . . . . . . . . . . . .

...

µk

. . .
. . .

. . .
. . .

. . . . . . . . . . . . . . .
...

γNt−1

. . .
. . .

. . .
. . .

. . .
. . . . . . . . . . . .

...
...

. . .
. . .

. . .
. . .

. . .
. . .

. . . . . . . . .
...

γ1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . . . .

...

0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . 0

0 . . . 0 γ1 . . . γNt−1 µk β1 . . . βNt−2 βNt−1





























.

We have:

te = GNt
ae + we. (15)

There is no imaginary interference in equation (15) and consequently Maximum Likeli-

hood (ML) [12] or linear equalizers can be used to estimate ak,n.

The computation of zk,n from yk,n according to equation (10) is referred to Preprocessing

1 as shown in Fig. 2. We will now provide a theoretical performance analysis of this scheme.

B. A theoretical performance analysis

Let us consider that the noise υk,n is an AWGN noise with E{|υk,n|
2} = N0. It is

worth noticing that ℜ{wk,n} is Gaussian noise as it is the result of the real part of a
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FBMC

DEMODULATOR


Preprocessing 1

y
k,n


z

k,n


Classical decoding

process


a

k,n


Fig. 2. FBMC Single delay STTC receiver

linear transformation of Gaussian noise. However this noise is colored. For exemple, when

NT = 2, we have :

• E{wk,nw
∗
k,n+2} = E{wk,n+2w

∗
k,n} =

N0(|Hk,0|
2+|Hk,1|

2)ℜ{(Hk,0)∗Hk,1}

2

• E{wk,nw
∗
k,n} =

N0(|Hk,0|
2+|Hk,1|

2)

2
= U0/2

• for q 6= {0, 1} E{wk,nw
∗
k,n+2q} = 0.

Let us recall that if the noise was white the ML performance would have been obtained by

the Viterbi decoder. Therefore, the performance of Viterbi decoding in this present case

is sub-optimal. In [8] the authors evaluate the loss of performance of Viterbi decoding

in presence of correlated noise. The optimal performance using a ML decoding is very

complex to implement since it requires an exhaustive search over all the possible transmit-

ted sequences. Another alternative could be to perform a whitening followed by a Viterbi

decoding. However, such Viterbi decoding will be more complex since the whitening will

increase the number of states. Indeed, the noise we is colored with a correlation matrix

R. Since R is a positive Hermitian matrix, its eigenvalues are real and positive. We have:

R = Q











λ0 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0

0 . . . 0 λLf−1











︸ ︷︷ ︸

Λ

QH . (16)
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 1
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n
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a
 ,
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+2)
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r
+2)


^ (2
r
+1)
)
1
(

,
n
k
t
  +2
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Fig. 3. Receiver decoding processing for FBMC modulation in the case of single delay STTC transmission.

with Q an unitary matrix i.e. QQH = ILf
. We denote by

Λ1/2 =











λ
1/2
0 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0

0 . . . 0 λ
1/2
Lf−1











. (17)

Therefore, the whitening process can be done by computing:

y
e
= Λ−1/2QHze = Λ−1/2QHG2

︸ ︷︷ ︸

H

ae + Λ−1/2QHwe
︸ ︷︷ ︸

µ
e

= Hae + µ
e
.

(18)

It can easily be proved that µ
e
is AWGN. As we will see in the simulation results section,

the presence of the colored noise will lead to a degradation of performance. Let us now

present an iterative decoding approach which should improve the performance compared

to the previous decoding strategy.

V. Iterative method

A. Iterative procedure

In this section we propose an iterative decoding procedure for FBMC single STTC

decoding. At the output of the Preprocessing 1 block (see Fig. 3), we can perform a

decoding procedure (ML, Viterbi, or linear decoding) to derive an estimate value â
(1)
k,n of

ak,n. From (3) and using this estimate â
(1)
k,n, we can compute an estimate û

(1)
k,n of uk,n by:
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û
(1)
k,n =

∑

(p,q)6=(0,0)

â
(1)
k+p,n+q

∞∑

m=−∞

gk,n[m]gk+p,n+q[m]

︸ ︷︷ ︸

γp,q

. (19)

It is worth noticing that for a well localized prototype filter in time and frequency domain,

it is enough to consider the previous sum only for p, q ∈ {1,−1} i.e.

û
(1)
k,n ≈

∑

|p|=1,|q|=1

â
(1)
k+p,n+qγp,q. (20)

This approximation is justified in [11]. γp,q can be computed off-line since the prototype

filter response is known. Then in (5) we can remove the contribution of the uk,n components

by computing:

y
(2)
k,n = yk,n −

Nt−1∑

i=0

Hk,iû
(1)
k,n−2i =

Nt−1∑

i=0

Hk,iak,n−2i +

Nt−1∑

i=0

jHk,i(uk,n−2i − û
(1)
k,n−2i) + υk,n. (21)

If we assume a perfect cancellation of the uk,n terms i.e. uk,n = û
(1)
k,n, we have:

y
(2)
k,n =

Nt−1∑

i=0

Hk,iak,n−2i + υk,n. (22)

The operation of estimating uk,n and cancelling its contribution to the signal yk,n is referred

as "Interference estimation + Interference cancellation" as depicted in Fig. 3. Thus, we

can perform from y
(2)
k,n a new decoding (Decoder 2 block) to obtain a new estimate â

(2)
k,n of

ak,n. In the same manner, we can use either a Viterbi/ML decoding or a linear decoder.

From â
(2)
k,n and (14) we can also compute t

(2)
k,n+2 by:

t
(2)
k,n+2Nt−2 =

Nt−1∑

q=1

γqâ
(2)
k,n−2q + µkâ

(2)
k,n +

Nt−1∑

q=1

βqâ
(2)
k,n+2q. (23)

t
(2)
k,n+2 can also be rewritten as:
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t
(2)
k,n+2Nt−2 =

Nt−1∑

q=1

γqak,n−2q + µkak,n +
Nt−1∑

q=1

βqak,n+2q +
Nt−1∑

q=1

γq(â
(2)
k,n−2q − ak,n−2q) + µk(â

(2)
k,n − ak,n)

+

Nt−1∑

q=1

βq(â
(2)
k,n+2q − ak,n+2q)

=

Nt−1∑

q=1

γqak,n−2q + µkak,n +

Nt−1∑

q=1

βqak,n+2q + noise component.

(24)

t
(2)
k,n+2Nt−2 is a new version of the t

(1)
k,n+2Nt−2 signal which is obtained from the estimates

of the Decoder 2 block output. Thus, this last equation can be used to perform another

estimation â
(3)
k,n of ak,n in the same manner as we compute â

(1)
k,n. We expect to improve the

estimation of ak,n since the noise component in (24) should be less correlated than the

one in (14) . Again from â
(3)
k,n we can derive an estimate û

(2)
k,n of uk,n as in (19). Therefore,

we can repeat another decoding process as already presented. We can run this decoding

process as many times as necessary. The process of computing t
(2)
k,n+2Nt−2 from the â

(2)
k,n

is referred as Preprocessing 2, see Fig. 3. Let us have a look at the convergence of this

iterative method.

B. A convergence analysis of the iterative procedure

Let us consider the function Pe = C1(SNR) that we obtain when considering the

perfect cancellation of the interference term by using equation (22), and the function

Pe = C2(SNR) obtained using equation (14). Pe is the real symbol error probability and

SNR = 2σ2
a/N0 = 1/N0 assuming that the real symbol power σ2

a is fixed at 1/2. These

functions are illustrated in Fig. 4 for a given channel realization. Let us note that C1 is

∆ dB better than C2 i.e.

C1

( 1

(1 + α∆)N0

)

= C2

( 1

N0

)

, (25)

with ∆ = 10log10(1 + α∆). At the first iteration, when using equation (14) for decoding,

we obtain at SNR = 1/N0 a symbol probability of error Pe1 = C2(
1

N0
). This first iteration

is summarized by the point A1(1/N0, Pe1) in Fig. 4. Now, from this probability of error we
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can derive the degradation that we obtain when applying interference cancellation. Indeed,

the cancellation of the interference will add some noise to the current noise component.

This additional noise component is given by the cancellation error:

n+ =
Nt−1∑

i=0

jHk,i(uk,n−2i − û
(1)
k,n−2i)

=

Nt−1∑

i=0

jHk,i

∑

(p,q)6=(0,0)

(ak+p,n−2i+q − â
(1)
k+p,n−2i+q)

∞∑

m=−∞

gk,n−2i[m]gk+p,n−2i+q[m].

(26)

Using the current observation:







âk,n = ak,n with probability 1 − Pe1

âk,n 6= ak,n with probability Pe1,

and considering that [11],

∑

(p,q)6=(0,0)

|
∞∑

m=−∞

gk,n−2i[m]gk+p,n−2i+q[m]|2 = 1,

we have:

E{|n+|2} = Pe1

Nt−1∑

i=0

|Hk,i|
2

︸ ︷︷ ︸

αh

.
(27)

Therefore, the symbol probability of error is given at second iteration by :

Pe2 = C1

( 1

N1
0

)

= C1

( 1

N0 + Pe1αh

)

= C1

( 1

N0(1 + αhC2(
1

N0
)/N0)

)

(28)

where 1/N1
0 is the SNR at the input of Decoder 2.

C2(
1

N0
) is a Q-function that is exponentially decreasing as SNR increases, thus αhC2(

1
N0

)/N0

decreases as SNR increases since the exponential function overwhelms the polynomial func-

tion. Then, there is a noise power Na
0 such that for N0 < Na

0 :

αh
C2(1/N0)

N0
< α∆
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thus,

1

N0(1 + αhC2(
1

N0
)/N0)

>
1

(1 + α∆)N0

.

Therefore for N0 < Na
0 ,

C1

( 1

N0(1 + αhC2(
1

N0
)/N0)

)

< C1

( 1

(1 + α∆)N0

)

= C2

( 1

N0

)

i.e.

Pe2 < Pe1.

For N0 < Na
0 the output of the second iteration will give better performance than the first

iteration. This second iteration is summarized by the point A2(1/N
1
0 , Pe2) in Fig. 4.

When recombining the signal at the input of Decoder 1 for the third iteration using

(23), the noise component is now smaller than in the previous case since Pe2 < Pe1.

Consequently, the third iteration performance is given by C2 at SNR = 1/N2
0 with

N2
0 < N1

0 . Thus, C2(1/N
2
0 ) < C2(1/N0) i.e the probability of error at the output of

Decoder 1 for the third iteration Pe3 is less than Pe1. This third iteration is summarized

by the point A3(1/N
2
0 , Pe3) in Fig. 4. Let us notice that Pe3 could be greater than Pe2.

The next iteration performance can be derived in the same manner since we just have

to replace N0 by N2
0 . Thus, the probability of error at the output of a given decoder

(Decoder 1 or Decoder 2) will always decrease or reach a fixed point.

VI. Simulation Results

In this section, we will evaluate the performance of the two decoding methods that we

have presented. We consider a transmission scheme with two and three transmit antennas.

For Nt = 2, we have:

t
(1)
k,n+2Nt−2 = |Hk,1|

2ak,n−2 + 2ℜ{H∗
k,1Hk,0}ak,n + |Hk,0|

2ak,n+2 + wk,n+2Nt−2, (29)

and for Nt = 3, we get:

t
(1)
k,n+2Nt−2 = |Hk,2|

2ak,n−4 + 2ℜ{H∗
k,2Hk,1}ak,n−2 + (2ℜ{H∗

k,2Hk,0} + |Hk,1|
2)ak,n

+ 2ℜ{H∗
k,1Hk,0}ak,n+2 + |Hk,0|

2ak,n+4.
(30)
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Fig. 4. Convergence illustration.

The simulation parameters we consider are given as follows :

• No channel coding;

• QPSK modulation;

• Rayleigh channel per antenna i.e. flat over all the sub-carriers. We assume the channel

coefficients are perfectly known by the receiver;

• Number of subcarrier M = 32;

• We used a truncation of the IOTA (Isotropic Orthogonal Transform Algorithm) pro-

totype function [1]. Its duration is limited to 4T0, which leads to a nearly orthogonal

prototype filter containing L = 4M = 128 taps.

In this section, we give BER (Bit Error Rate) versus SNR simulation results and conse-

quently, we do not take into consideration the loss of efficiency due to the cyclic prefix in

CP-OFDM modulation.

In Fig. 5 we show the performance of the FBMC decoding structure introduced in

Fig. 2. For FBMC, we consider both ML and Viterbi decoding. ML decoding using an

exhaustive search among all possible transmitted sequences of data outperforms Viterbi

decoding by 1 dB. This is due to the fact that the noise is colored thus Viterbi decoding is

suboptimal. We also give the CP-OFDM performance using a Viterbi decoding. We can
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see that that CP-OFDM outperforms ML/FBMC by about 1 dB.

In the rest of this section, we will focus on the iterative decoding performance. The

simulation results are obtained using Viterbi decoding blocks implemented inside Decoder

1 and Decoder 2 blocks in Fig. 3. The Viterbi algorithm implemented in Decoder 1 is re-

lated to equation (29). For QPSK modulation, the trellis is a 4NT−1 state trellis with only

two possible transitions per state since the detection is performed on real data. Whereas,

the Viterbi algorithm implemented in Decoder 2 is related to equation (22) and is a 2NT −1

state trellis with two transitions per state, again since detection is performed on real data.

We also consider hard estimation of the data at the output of a given Viterbi decoder. For

the CP-OFDM case with QPSK modulation, we have a 4NT−1 states trellis with 4 tran-

sitions per state as the detection is performed on complex data. Therefore, this Viterbi

algorithm is more complex compared with one of the two Viterbi algorithms used in the

case of FBMC modulation. The two Viterbi algorithms used in FBMC taken together

have a complexity comparable to the one used with CP-OFDM. However, the two Viterbi

algorithms used in FBMC operate on a frame sequence which is two times longer than

the one for CP-OFDM modulation. Then, in terms of complexity the proposed FBMC

structure has a significantly higher complexity than CP-OFDM mainly due to the "Inter-

ference estimation + Interference cancellation" block.

For uncorrelated Rayleigh channels, we plot the performance of this FBMC receiver

structure for different iteration stages as well as the performance of CP-OFDM with ML

decoding as a matter of comparison. Fig. 6 and Fig. 7 provide the simulation results

for Nt = 2 and Nt = 3 respectively. For n = 1, we have a 2 dB degradation compared

to CP-OFDM. For n ≥ 2 (more than two Viterbi decoding), we get closer to CP-OFDM.

For n = 5 or 6, we almost reach the same performance as CP-OFDM. In Fig. 6 we

also plot the curve obtain when we assume perfect interference cancellation in the second

iteration as mention in (22). In that case, there is a possible gain of 0.8 dB since the

Viterbi structure with 2 states and two transitions per state (Decoder 2) provides better

performance than the 4 state Viterbi decoder with 4 transitions per state implemented for

January 4, 2010 DRAFT



EURASIP SPECIAL ISSUE ON MULTICARRIER MODULATION 17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

 

 

FBMC/ML
FBMC/Viterbi 
CP−OFDM/Viterbi or ML

Fig. 5. Performance of single delay STTC with 2 transmit antennas and one receive antenna (FBMC

and CP-OFDM modulation).

CP-OFDM. Indeed, it is possible to show that the structures of the code related to these

two trellises have the same minimum distance. However, the performance gain is due to

the distance distribution associated to the two trellis.

Moreover, let us evaluate this scheme in presence of a frequency selective channel. We

consider the following channel parameters:

• Uncoded QPSK modulation;

• M = 64 sub-carriers;

• Static channels (no Doppler); IOTA prototype;

• 3-taps channels between the transmit antennas and the receive:

Power profile: 0, -4, -10 (dB) Delay: 0,1,2 (number of samples);

• OFDM Cyclic Prefix length : 4 samples;

• Perfect Channel estimation;

As shown in Fig. 8, after one iteration (n = 1) we have about 2 dB degradation

compared to CP-OFDM. For n = 2 and n = 3, the loss is reduced to 0.7 dB , and for

n = 6 the degradation is about 0.3 dB compared to CP-OFDM. However, the iterative

method has an inherent gain as FBMC does not use a CP contrary to CP-OFDM.
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Fig. 6. Performance of single delay STTC (iterative decoding) with 2 transmit antennas and one receive

antenna (FBMC and CP-OFDM modulation).

VII. Conclusion

In this paper, we have presented two general methods for data detection when combining

FBMC and single delay STTC, the interference cancellation and the iterative methods.

The interference cancellation method despite its simplicity has poorer performance com-

pared to CP-OFDM. Thus, we have proposed an iterative decoding based on interference

estimation and cancellation which does not require any channel coding or decoding block.

We have shown that in the case of QPSK modulation and Rayleigh or frequency selective

channels it is possible with this decoding method to perform as better as OFDM-STTC.

Moveover if the iterative cancellation process is improved, a potential gain can be achieved.

This is obtained with a relatively higher complexity. In future work, we will look at FBMC

with other STTC schemes and evaluate their performance under non locally flat channels.
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Fig. 7. Performance of single delay STTC (iterative decoding) with 3 transmit antennas and one receive

antenna (FBMC and CP-OFDM modulation).

Appendix

I. general expression of Ak,n,Bk,n and Ck,n

A. Ak,n value

Let us compute Ak,n

• Case Nt even i.e. Nt = 2Ut

Ak,n = xk,n(

Ut−1∑

i=0

H∗
k,2Ut−1−iHk,i +

2Ut−1∑

i=Ut

H∗
k,2Ut−1−iHk,i). (31)

Using the relation q = 2Ut − 1 − i, we have:

Ak,n = xk,n(

Ut−1∑

i=0

H∗
k,2Ut−1−iHk,i +

Ut−1∑

q=0

H∗
k,qHk,2Ut−1−q) = xk,n(

Ut−1∑

i=0

(H∗
k,2Ut−1−iHk,i + H∗

k,iHk,2Ut−1−i))

= xk,n (2

Ut−1∑

i=0

ℜ{(H∗
k,2Ut−1−iHk,i)})

︸ ︷︷ ︸

µk

.
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Fig. 8. Performance of single delay STTC (iterative decoding) with 2 transmit antennas and one receive

antenna over frequency selective channels).

• Case Nt odd i.e. Nt = 2Ut + 1

µk = (

Ut−1∑

i=0

H∗
k,2Ut−iHk,i + H∗

k,Ut
Hk,Ut

+

2Ut∑

i=Ut+1

H∗
k,2Ut−iHk,i). (32)

Again using q = 2Ut − i, we have:

µk = (2
Ut−1∑

i=0

ℜ{(H∗
k,2Ut−iHk,i)} + |Hk,Ut

|2). (33)

and we get:

Ak,n = xk,nµk

B. Bk,n value

Let us now, compute Bk,n, setting q = p − i, we get:

Bk,n =
Nt−1∑

i=1

i−1∑

p=0

H∗
k,Nt−1−pHk,ixk,n+2p−2i =

Nt−1∑

i=1

i∑

q=1

xk,n−2qH
∗
k,Nt−1+q−iHk,i. (34)
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This last equation is the sum over a triangular set of index therefore the sum can be taken

either from lines or from columns where the total is the same. Therefore,

Bk,n =
Nt−1∑

q=1

xk,n−2q

Nt−1∑

i=q

H∗
k,Nt−1+q−iHk,i, (35)

taking m = i − q, we get:

Bk,n =

Nt−1∑

q=1

xk,n−2q

Nt−1−q
∑

m=0

H∗
k,Nt−1−mHk,m+q

︸ ︷︷ ︸

γq

,
(36)

• Case Nt − q even i.e. Nt − q = 2Uq, then,

γq =

Nt−1−q∑

m=0

H∗
k,Nt−1−mHk,m+q =

Uq−1
∑

m=0

H∗
k,2Uq+q−1−mHk,m+q +

2Uq−1
∑

m=Uq

H∗
k,2Uq+q−1−mHk,m+q

= 2

Uq−1
∑

m=0

ℜ{H∗
k,2Uq+q−1−mHk,m+q}.

• Case Nt − q odd i.e. Nt − q = 2Uq + 1, then,

γq =

Nt−1−q
∑

m=0

H∗
k,Nt−1−mHk,m+q =

Uq−1
∑

m=0

H∗
k,2Uq+q−mHk,m+q + H∗

k,Uq+qHk,Uq+q +

2Uq∑

m=Uq+1

H∗
k,2Uq+q−mHk,m+q

= 2

Uq−1
∑

m=0

ℜ{H∗
k,2Uq+q−mHk,m+q} + |H∗

k,Uq+q|
2.

C. Ck,n value

Let us now compute Ck,n, setting q = p − i, we get:

Ck,n =

Nt−2∑

i=1

Nt−1−i∑

q=1

H∗
k,Nt−1−q−iHk,ixk,n+2q. (37)

This last equation is the sum over a triangular set of index therefore the sum can be taken

either from lines or from columns the total is the same. Therefore,

Ck,n =

Nt−1∑

q=1

xk,n+2q

Nt−1−q
∑

i=0

H∗
k,Nt−1−q−iHk,i

︸ ︷︷ ︸

βq

,
(38)
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• Case Nt − q even i.e. Nt − q = 2Uq , then,

βq =

Nt−1−q
∑

i=0

H∗
k,Nt−1−q−iHk,i =

Uq−1
∑

i=0

H∗
k,2Uq−1−iHk,i +

2Uq−1
∑

m=Uq

H∗
k,2Uq−1−iHk,i

= 2

Uq−1
∑

i=0

ℜ{H∗
k,2Uq−1−iHk,i}.

(39)

• Case Nt − q odd i.e. Nt − q = 2Uq + 1 , then,

βq =

Nt−1−q
∑

i=0

H∗
k,Nt−1−q−iHk,i =

Uq−1
∑

i=0

H∗
k,2Uq−iHk,i + H∗

k,Uq
Hk,Uq

+

2Uq∑

m=Uq+1

H∗
k,2Uq−iHk,i

= 2

Uq−1
∑

m=0

ℜ{H∗
k,2Uq−iHk,i} + |H∗

k,Uq
|2.
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