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1 Introduction

In his thesis, Wiberg [1] has observed that if the
MAP decoder inputs are gaussian and indepen-
dent, then its outputs can also be approximated
as gaussian random variables. Recently, El Gamal
[2] has proposed to use this gaussian approximation
to study the asymptotic performances of the iter-
ative decoder of different families of concatenated
codes (LDPC, turbo codes [3], ...). From this ap-
proximation, it is possible to find the minimum ra-
tio Eb/N0S corresponding to the limit from which
the signal to noise ratio of the extrinsic information
SNREXTR → ∞ (and the bit error ratio Pe → 0)
when the number of iterations m → ∞. This
method can be used to choose the best constituent
codes of parallel concatenated convolutional codes
(PCC codes) from the point of view of the iterative
decoder.

In this paper, we propose to generalize this
method to PCC codes with more than 2 constituent
codes or multiple parallel concatenated convolu-
tional codes (MPCC codes).

We will first review the work of El Gamal on
gaussian approximation [2]. Then, we will ap-
ply the gaussian approximation to different itera-
tive decoder structures for Multiple Turbo codes.
Finally, we will give some lists of thresholds for
MPCC codes of rate 1/2 with J convolutional codes
of rate J

J+1 . These concatenated codes are an inter-
esting alternative to Turbo Codes. The decoding of
these codes can be simpler than the classical ones.

2 Mathematical model

Let’s consider that the zero codeword has been
transmitted over an AWGN channel. The signal
to noise ratio of a gaussian random variable x is
defined by SNR(x) = [E(x)]2/VAR(x) where E(x)
and VAR(x) are respectively the mean and vari-
ance of x. If the information are gaussian logarithm
likelihood ratios (LLR), we have the following rela-
tion: VAR(x) = 2×E(x). The gaussian approxima-
tion means that the decoder outputs are completely
determined from its inputs. We have the relation
Pe = Q(

√
SNR) between the bit error ratio Pe and

the signal to noise ratio SNR where Q() is the error
function. We will consider that the information se-
quences are long enough to consider that the cycles
in the graph have no effect on the message pass-
ing all along the iterations. In that case, we can
consider that the input information APRILLR et
INTLLR and the output information APPLLR
and EXTRLLR of the MAP decoder are gaussian
and independent. Since 1/n convolutional codes
are isotropic [4], the signal to noise ratio of the
extrinsic information SNREXTR is independent of
the position of the bit in the sequence. As a con-
sequence, we can consider that the MAP decoder
is a signal to noise amplifier. In this paper, ex-
cept for the parallel decoder, an iteration is associ-
ated to the decoding of one constituent code. For a
given ratio Eb/N0 of the channel information, and
according to the gaussian approximation and inde-

pendence hypothesis, SNR
(m)
EXTR evolves at each



iteration m as follows :

SNR
(m)
EXTR = fEb/N0

(SNR
(m)
APRI) (1)

= fEb/N0
(SNR

(m−1)
EXTR)

The function fEb/N0
gives the relation between the

signal to noise ratios SNRAPRI and SNREXTR

of the MAP decoder for a given ratio Eb/N0. As
stated hereabove, for rate 1/n convolutional codes,
the statistical properties of the output information
are independent of the bit position. For k/n convo-
lutional codes, since these codes are anisotropic of
degree d ≤ k, we have d different functions fEb/N0

.
In that case, we can generally use the mean of these
functions.

Using the Lebesgue-Borel theorem, we can say
that the sequence {SNREXTR}∞m=0 reaches a fix
point τ(Eb/N0) < ∞ or tends to ∞. Since this
sequence is a continuous increasing sequence, we
have τ(Eb/N0) < ∞ for Eb/N0 < Eb/N0S (Pe 6=
0 ∀m) and τ(Eb/N0) = ∞ for Eb/N0 > Eb/N0S

(Pe → 0 when m → ∞). Therefore, the signal
to noise ratio Eb/N0S is the threshold which de-
termines the convergence or non convergence of
the iterative decoder. The function SNREXTR =
fEb/N0

(SNRAPRI) for different values of the ratio
Eb/N0 is determined by means of Monte-Carlo sim-
ulations. For Turbo codes, the threshold Eb/N0S

corresponds to the ratio Eb/N0 for which the func-
tion SNREXTR = fEb/N0

(SNRAPRI) is tangent to
the straight line SNREXTR = SNRAPRI .

3 Generalization to multiple

parallel concatenated con-

volutional codes

Parallel concatenated convolutional codes with
more than 2 constituent codes or multiple parallel
concatenated convolutional codes (MPCC codes)
have been introduced in [5]. In comparison with
classical Turbo codes, different iterative decoder
structures are possible when the number of con-
stituent codes J is greater than 2 : the serial de-
coder, the modified serial decoder and the parallel
decoder.

The figure 1 gives a simplified scheme of a serial
decoder.

According to the independence hypothesis, the
interleavers are not drawn in the figures. For this
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Figure 1: serial decoder

structure, the ratio SNR
(m)
EXTR evolves at each it-

eration m as in the classical Turbo codes :

SNR
(m)
EXTR = fEb/N0

(SNR
(m)
APRI)

= fEb/N0
(SNR

(m−1)
EXTR) (2)

Since we only use the extrinsic information
from the previous decoder for the calculation of
EXTR(m), this decoder gives the worst asymptotic
performances.

The modified serial decoder is given in figure 2.
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Figure 2: modified serial decoder

The a priori information is the sum of the extrin-
sic information calculated previously by the other
decoders. For exemple, let’s consider the case

J = 3, the ratio SNR
(m)
EXTR evolves at each iter-

ation m as follows :

SNR
(m)
EXTR = fEb/N0

(SNR
(m)
APRI)

= fEb/N0
(SNR

(m−1)
EXTR + SNR

(m−2)
EXTR)

(3)

In the parallel decoder given in figure 3, the J
MAP decoders calculate in parallel the extrinsic
information from those calculated during the pre-
vious iteration. In this case, an iteration will corre-
spond to the decoding of J codes in parallel. With

this decoder, the sequence SNR
(m)
EXTR is given by :

SNR
(m)
EXTR = fEb/N0

(SNR
(m)
APRI)

= fEb/N0
((J − 1) × SNR

(m−1)
EXTR) (4)
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Figure 3: parallel decoder

With this structure, the threshold Eb/N0S cor-
responds to the ratio Eb/N0 for which the function
SNREXTR = fEb/N0

(SNRAPRI) is tangent to the

straight line SNREXTR = 1
J−1 × SNRAPRI .

For modified serial and parallel decoder, there
are J − 1 of extrinsic information involved in the
calculation of EXTR(m). As in section 2, we can
use the relation (4) to calculate the threshold of the
iterative decoder.

We have compared the ratio SNREXTR evolu-
tion in function of the number of iterations for the
modified serial and parallel decoder on figures 4
and 5. It is clear that the ratio SNREXTR in-
crease faster using a parallel decoder. However, the
threshold Eb/N0S is the same for both structures.
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Figure 4: Evolution of the ratio SNREXTR with
Eb/N0=0.8dB for a modified serial decoder.
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Figure 5: Evolution of the ratio SNREXTR with
Eb/N0=0.8dB for a parallel decoder.

4 Results

Tables 1, 2 and 3 give different results obtained for
MPCC codes of rate 1/2 with J constituent codes of
rate J

J+1 . Table 1 gives the thresholds Eb/N0S for
different codes obtained with an exhaustive search
by Benedetto et al.[6].

Table 1: Asymptotic performances of MPCC codes
of rate 1/2 with rate k/n constituent codes.

code modified
serial

parallel

R = 3/4 m = 2 0.44 dB 0.44 dB
R = 3/4 m = 3 1.07 dB 1.07 dB
R = 4/5 m = 2 1.18 dB 1.18 dB
R = 4/5 m = 3 1.74 dB 1.74 dB

Tables 2 and 3 deal with MPCC codes with J
constituent codes (A, r, s) of rate J

J+1 . A (A, r, s)

coder is a one memory rate r+s
r+s+1 recursive convo-

lutional code with r bits included in the recursion
and s bits excluded from the recursion. As shown
on figure 6, the Tanner graph of these convolutional
codes is a tree.

These concatenated codes are anisotropic of de-
gree 2. For modified serial and parallel decoder, the
poor performances of the (A, r, s) are balanced with
the number J − 1 of extrinsic information involved
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Figure 6: Tanner graph of a (A, r, s) coder.

in the calculation of EXTR(m).

For exemple, the threshold of 0.96dB for the
(A, 3, 1) code is close to the one calculated by El
Gamal for the rate 1/2 Turbo codes composed of
2 (15, 13) punctured codes. It is interesting to
note that for different multiple PCC there is no
threshold Eb/N0S. For exemple, let’s consider the
case of the MPCC code with 3 constituent codes
(A, 1, 2). The two different functions fEb/N0

and
the mean of these functions are given on figure 7.
Due to the bad protection of the s bits excluded
from the recursion, for all values Eb/N0, the mean
function (dashed line) always cross the straight line
SNREXTR = 1

2 × SNRAPRI .
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Figure 7: Functions fEb/N0
for the MPCC code

with 3 constituent codes (A, 1, 2).

We have compared the thresholds obtained with
gaussian approximation and the performances of
the serial, modified serial (dashed line) and paral-
lel decoder for a multiple PCC code composed of

Table 2: Asymptotic performances of multiple PCC
codes of rate 1/2 with 3 rate 3

4 one memory convo-
lutional code rate.

code serial modified
serial

parallel

(A, 3, 0) 3.5dB 1.22 dB 1.22dB
(A, 2, 1) - - -
(A, 1, 2) - - -

Table 3: Asymptotic performances of multiple PCC
codes of rate 1/2 with 4 rate 4

5 one memory convo-
lutional code rate.

code serial modified
serial

parallel

(A, 4, 0) 4.3dB 1.19 dB 1.19 dB
(A, 3, 1) 3 dB 0.96 dB 0.96 dB
(A, 2, 2) - - -
(A, 1, 3) - - -

4 codes (A, 3, 1) and 3 random interleavers of size
N=65536 bits on figure 8.

For the modified serial and parallel decoders, the
thresholds are slightly pessimistic (about 0.1dB).
We can clearly observe two limitations on the per-
formances of the PCC codes : the limitation due
to the convergence of the iterative decoder and the
limitation called floor effect due to the low weight
codewords.

When the size of the interleavers is smaller, the
independence condition is no longer applicable. We
have a degradation in the performances of the iter-
ative decoder due to the cycles in the graph. Dif-
ferent stategies are possible to reduce this degra-
dation. A first solution is to build the interleaver
in order to increase the girth of the graph [7]. An-
other solution is to use modified parallel decoders
called extended parallel decoders in [8].

5 Conclusion

In this paper, we have generalized the gaussian ap-
proximation to multiple PCC codes. For long in-
terleaver size, the thresholds calculated with the
gaussian approximation can be used to choose the
best constituent codes of multiple PCC codes. We
have also shown that the threshold for multiple



PCC codes composed of one memory convolutional
codes are close to better than the best turbo codes
threshold determined in [2].
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Figure 8: Performances BER versus Eb/N0 for the serial, modified serial (dashed line) and parallel
decoder m=2,5,10 and 20.


